
www.manaraa.com

INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI
films the text directly from the original or copy submitted. Thus, some
thesis and dissertation copies are in typewriter face, while others may
be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the
copy submitted. Broken or indistinct print, colored or poor quality
illustrations and photographs, print bleedthrough, substandard margins,
and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete
manuscript and there are missing pages, these will be noted. Also, if
unauthorized copyright material had to be removed, a note will indicate
the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by
sectioning the original, beginning at the upper left-hand corner and
continuing from left to right in equal sections with small overlaps. Each
original is also photographed in one exposure and is included in
reduced form at the back of the book.

Photographs included in the original manuscript have been reproduced
xerographically in this copy. Higher quality 6" x 9" black and white
photographic prints are available for any photographs or illustrations
appearing in this copy for an additional charge. Contact UMI directly
to order.

University Microfilms International
A Bell & Howell Information Company

300 North Zeeb Road. Ann Arbor. Ml 48106-1346 USA
313/761-4700 800/521-0600

www.manaraa.com

www.manaraa.com

O rder N um ber 9209090

Im plem entation of a sensor-based supervision system for CNC
machining

Wells, Robert Lindsay, Ph.D.

University of Florida, 1991

UMI
300 N. Zeeb Rd.
Ann Arbor, MI 48106

www.manaraa.com

www.manaraa.com

IMPLEMENTATION OF
A SENSOR-BASED SUPERVISION SYSTEM

FOR CNC MACHINING

By
ROBERT LINDSAY WELLS

A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL
OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT

OF THE REQUIREMENTS FOR THE DEGREE OF
DOCTOR OF PHILOSOPHY
UNIVERSITY OF FLORIDA

1991

www.manaraa.com

ACKNOWLEDGEMENTS

The author would like to express his sincere gratitude to
Dr. Jiri Tlusty and Dr. Scott Smith for their guidance and
generous support during this research. The author also thanks
Dr. Carl Crane, Dr. John Schueller and Dr. Senser Yeralan for
serving on his committee, and Dr. Jose Principe for
contributing his expertise to the project.

Special thanks go to Bob Winfough of the Machine Tool
Laboratory, Russ Walters of the Electrical Engineering
Department, John Frost of Manufacturing Laboratories and
Gordie Hawes of Automation Intelligence for their assistance
in the research.

Finally, to his parents, Bob and Connie Wells, the author
sends his deepest love and gratitude for their unqualified
support and encouragement during the long haul.

This research was sponsored in part by a National Science
Foundation grant, #DDM-8914084, "Comprehensive Supervision
System for Machining Centers."

ii

www.manaraa.com

TABLE OF CONTENTS
page

ACKNOWLEDGEMENTS .. ii
ABSTRACT .. V
CHAPTERS

1 INTRODUCTION ... 1
Sensor-Based Supervision of Machining 1
Review of the Literature 4
Outline of the Present Research 17

2 THE MACHINE TOOL AND ITS CONTROLLER................. 2 0
The White-Sunstrand Series 20 Oitmimil...............2 0
The Automation Intelligence Flexmate Controller 24
The FlexMate Motion Co-Processor 29

3 THE MACHINE MONITORING AND CONTROL SCHEMES 37
Adaptive Control System 37
The Fast Stopping Routine.............................40
Tool Breakage Detection System 42
Chatter Recognition and Control System 4 6
Spindle Torque Overload Detection System 50

4 THE ON-LINE MACHINE SUPERVISION,SYSTEM 54
An Inventory of the Sensors......................... 54
The Interface Hardware 59
The Interface Software 62
Integration of the Supervision System 64

5 THE OFF-LINE MACHINE EVALUATION SYSTEM 71
Hardware Requirements.................................71
Data Acquisition......................................75
Experimental Modal Analysis.............. 79
Chatter Detection and Analysis 86

iii

www.manaraa.com

6 EXPERIMENTAL VERIFICATION OF THE ON-LINE SYSTEM 91
The Fast Stopping Routine........................... 91
The Supervision Subroutines......................... 96
Adaptive Control System.............................. 101
Tool Breakage Detection System....................... 106
Chatter Recognition and Control System...............109
Spindle Torque Overload Detection System.............112

7 CONCLUSIONS AND RECOMMENDATIONS 116
APPENDICES

A LISTING OF THE SUPERVISION SOFTWARE 119
Supervision Computer Interface....................... 119
FlexMate Motion Co-Processor Interface...............127
Fast Stopping Program.................................135

B LISTING OF THE SPINDLE TORQUE OVERLOAD PROGRAM 138
C LISTING OF THE MACHINE EVALUATION PROGRAM 145

REFERENCES ... 178
BIOGRAPHICAL SKETCH 183

iv

www.manaraa.com

Abstract of Dissertation Presented to the Graduate School
of the University of Florida in Partial Fulfillment of the

Requirements for the Degree of Doctor of Philosophy
IMPLEMENTATION OF

A SENSOR-BASED SUPERVISION SYSTEM
FOR CNC MACHINING

By
Robert Lindsay Wells

August 1991
Chairman: Dr. Jiri Tlusty
Major Department: Mechanical Engineering

A sensor-based supervision system for CNC machining was
implemented on a White Sunstrand Series 20 Omnimil machining
center. An interface was created between the Automation
Intelligence FlexMate CNC controller and a supervisory
computer. A set of supervision subroutines was created that
allowed monitoring and control schemes running on the
supervisory computer to take control of the machine tool based
on sensor data sampled during the metal cutting process.

Four supervision schemes were implemented as part of the
on-line machine supervision system. The Adaptive Control
scheme monitored the vibration of the metal cutting process
and varied the feedrate to achieve stable cuts. The Tool
Breakage Detection scheme stopped the cutting process when a
broken tool was detected. The Chatter Recognition and Control

www.manaraa.com

scheme detected chatter, a self-regenerative vibration
phenomenon, and automatically selected a new stable spindle
speed. The Spindle Torque Overload Detection scheme stopped
the feed if a variation in the spindle speed indicated that
the cutting tool was about to stall in the workpiece.

Also created was an off-line machine evaluation system
which was used to measure Tr'a&s'fer Functions on the machine,
sample data from sensors, and analyze machine tool chatter.
The off-line system was used to evaluate the performance of
both the supervision subroutines and the monitoring and
control schemes in the on-line supervision system.

Each of the individual monitoring and control schemes was
demonstrated in a series of cutting tests on the Omnimil. It
was shown that the schemes were able to identify various
disturbances in the cutting process, and take corrective
action using the supervision subroutines to issue commands to
the machine tool controller.

The research demonstrates the feasibility of having an
external supervisory computer work in cooperation with a
machine tool controller. This suggests that future CNC
controllers should directly support this kind of interface.

www.manaraa.com

CHAPTER 1
INTRODUCTION

The issues that motivate sensor-based supervision of
machine tools are discussed in this chapter, and a review of
research into the monitoring and control of machining
operations is presented. Adaptive control, broken tool
detection, chatter recognition and control, and spindle torque
overload detection will be emphasized. The original
contributions of the present research, centering on the
creation of a machine tool supervision system, are outlined.

Sensor-Based Supervision of Machining

The principal reason for developing sensor-based
supervision systems for the monitoring and control of
Computer-Numerical Control (CNC) machine tools is to enhance
their productivity. The objective is not necessarily to
replace the machine operator, but to provide a fast and
accurate response mechanism to disturbances in the milling
process that limit the Metal Removal Rate (MRR) , and which
degrade the quality of the finished product.

After careful modeling and analysis of the dynamics of
the milling process, sensor-based monitoring and control

www.manaraa.com

schemes can be developed that permit the automatic detection
and regulation of such phenomena as machine tool chatter and
broken milling cutters. Individual schemes that measure, and
sometimes control, several critical aspects of the milling
process have been developed by many researchers over the
years. Very little work has been done, however, in integrating
these separate schemes into a comprehensive machine
supervision system. It is the objective of the present
research to implement such a comprehensive system.

A clear distinction needs to be drawn between sensor-
based computer supervision of machining and Computer
Integrated Manufacturing (CIM). The integration of Computer-
Aided Design (CAD) facilities with the automatic generation of
tool paths provided by Computer-Aided Manufacturing (CAM) , and
with production scheduling and inventory control programs, is
called CIM. The trend towards full factory automation employs
these tools with the aim of developing a computerized
manufacturing environment.

Sensor-based supervision of production machinery, on the
other hand, aims at increasing productivity and product
quality by direct monitoring and control at the machine level.
The supervision system may or may not be part of a larger CIM
system. The machine tool phenomena that are most often
monitored are tool condition, cutting forces and vibration,
since these affect both MRR and product quality. A detailed

www.manaraa.com

comparison of various sensing strategies will be presented in
the next section.

The motivation for on-line monitoring and control of CNC
machine tools is that operations such as the end milling of
aluminum aircraft panels and the machining of cast iron auto
body stamping dies require the removal of a significant
percentage of the original metal (Smith and Delio, 1989). A
high MRR is desirable for these time consuming and expensive
operations, but the increased axial and radial tool immersions
that are used for the higher MRR can cause the self-excited
vibration phenomenon called chatter, can damage the cutting
tool, or can cause poor surface finish. Sensing schemes that
detect these events, and take corrective action, could provide
significant increases in productivity and product quality.
Automatic selection of optimally stable speeds in High Speed
High Power (HSHP) milling (Delio et al., 1990), adaptive
control of the machining feed rate to avoid chatter (Tlusty
and Tyler, 1988) and the sensing of tool breakage (Tlusty and
Tarng, 1988) are examples of proven schemes that could be
included in a comprehensive supervision system.

The main barrier to the integration of sensor-based
supervision systems, as well as CAD/CAM systems, with machine
tool controllers is described by Wright et al. (1990a, p.322).
They state that "in today's factories, the integration of such
CAD tools and on-machine sensors is frustrated by the closed
architecture of typical machine tool controllers." The problem

www.manaraa.com

is that in order for the supervision system to act
automatically upon sensed data, it must be able to take
control of the machine tool, or be able to issue commands to
the CNC controller. Creating the interface between a
supervision system running on a remote computer and the CNC
controller on the machine tool is not a trivial task.

The present research has taken advantage of the
relatively open architecture of a commercially available
machine tool CNC controller. However, the supervision system
could be applied to any machine tool if access to the control
parameters of the machining process were available.

Review of the Literature

The book by Pressman and Williams (1977) gives a thorough
description of CNC machine tool technology as it is in common
use today. The paper by Tlusty and Andrews (1983) and the
report by Birla (1980) are often cited as excellent reviews of
the sensors in common usage for monitoring and control of
machining operations. Bolinger and Duffie (1988) also describe
sensors in common use for the computer control of machines and
processes. It can be seen from the dates of these references
that sensor technology has for some time been adequate for the
task of machine supervision. The challenge is to select
sensors that monitor relevant aspects of the dynamics of the
milling process, and to process their signals with algorithms

www.manaraa.com

that provide robust fault detection. Past and present research
into various machine tool monitoring and control schemes is
described below, as well as the work of researchers who are
attempting to integrate sensors into supervision systems.

Adaptive control (A/C) of machine tools has been
researched for some time. Ulsoy et al. (1982) gave a
comprehensive review of early work. When applied to machine
tools, the term adaptive control has come to mean the
variation of such machining parameters as feed rate and
spindle speed based on sensed cutting data such as the cutting
force or vibration. The objective is usually to maximize the
MRR, or to prolong tool life.

Week et al. (1975), whose work is described in more
detail below, developed an A/C system that varied the spindle
speed to avoid chatter. Lauderbaugh and Ulsoy (1986), whose
paper also contains a good review of A/C research, designed a
Model Reference Adaptive Control (MRAC) system for controlling
the force in milling. They proposed regulating the feed rate
based on a comparison of the cutting force (obtained from a
dynamometer) to a dynamic model of the cutting process.

Tlusty and Tyler (1988) describe more recent efforts in
the field, and outline an effective A/C scheme. The objective
of their work was to both avoid chatter during cutting by
varying the feed rate to keep the cutting force below a
limiting value, and to detect when the tool impacts the
workpiece. The latter capability allows the tool to be moved

www.manaraa.com

at higher feedrates when it is not cutting, and the feed to be
adjusted automatically to the correct cutting value when the
high force of impact is sensed. This scheme will be
implemented as part of the present research.

Figure 1.1 shows a simplified block diagram of an
adaptive control system that is controlling the cutting force,
Fa/ ky varying the feed rate, F. It can be seen that the
machine tool and its controller are part of the control loop,
and in this regard the system is similar to a machine tool
supervision system. However, where adaptive control schemes
usually aim at improving one aspect of machining (say,
avoiding chatter), a supervision system would monitor and
control all the relevant parameters of the machining
operation. Figure 1.2 shows a block diagram of a comprehensive
supervisory system that issues both speed and feed commands to
the CNC controller based on sensed data.

One aspect of machining that is commonly monitored is the
condition of the cutting tool. Both tool wear and tool
breakage in milling, turning and drilling can be considered in
these schemes. For catastrophic tool failure, the objective is
to detect breakage with high reliability and a minimum of
false alarms. A good review of research in on-line tool
condition monitoring can be found in the paper by Johnson et
al. (1988). These investigators are typical in their
advocation of using cutting force signals (obtained from
dynamometers) and vibration signals of the tool relative to

www.manaraa.com

7

CONTROLLER

CNC

SENSOR

FORCE

CONTROLLER

A /C MACHI NI NG

PR O C ESS

Figure 1.1. Block Diagram of an Adaptive Control System
for a Machine Tool.

S U P E R V I S I O N S Y S T E M

C O N T R O L L E R

CNC M A C H I N I N G
P R O C E S S

A R R A Y

C O N T R O L L E R

B R O K E N T O O L

R E G U L A T I O N

D E T E C T I O N

C H A T T E R

A / C

Figure 1.2. Block Diagram of a Machine Tool Supervision
System.

www.manaraa.com

the workpiece (obtained from displacement transducers) to
monitor both wear and breakage.

Acoustic emission (AE), which refers to high frequency
stress waves generated by the rapid release of strain energy
within a material, has also been used to monitor tool
condition. This signal is obtained by a very high frequency
piezoelectric transducer. Balakrishnan et al. (1989) used a
combination of AE signals and cutting force signals to monitor
tool conditions in turning. However, Tlusty and Tarng (1988,
p.46) state that the AE sensor is "sensitive to very sudden
events like micro and macro fractures due to chip formation,
chip breaking, tool wear and tool breakage . . . [but] . . .
problems of robustness are still not satisfactorily solved and
the signals are sensitive to variations of cutting data [such
as chip breakage, and entry and exit transients]." The
required instrumentation is also quite expensive.

The temperature and stress state of the cutting tool can
be used as indicators of tool wear in turning, as proposed by
Wright et al. (1990b). The difficulty here is in the
application of these sensors (thermocouples and strain gages)
to rotating tools such as those used in milling and drilling.

Tlusty and Tarng (1988) present a discussion of sensing
issues in monitoring tool breakage, and give a detailed
comparison of force and vibration signals. They conclude that,
although the cutting force gives the best evidence of cutter
damage, dynamometers only work well in the low frequency

www.manaraa.com

range. Vibration, as measured by capacitance probes, was shown
to give a reliable indication of tool breakage even at high
cutting speeds. Their scheme will be installed as part of the
supervision system implemented in the present research.

The sensor data from tool condition monitoring can be
processed by a variety of Digital Signal Processing (DSP)
algorithms. Richter and Spiewak (1989) give an overview of
some of the schemes used to extract the characteristic
features of tool wear and tool breakage from the sensor
signals. Pre-processing by various filtering and averaging
schemes, both in the time and frequency domains, and feature
extraction by such methods as Auto-Regressive Moving Average
(ARMA) models (Lan and Naerheim, 1985) and first and second
difference averaging (Altintas et al., 1985; Tlusty and Tarng,
1988) have been used.

Machine tool chatter is a self-regenerative vibration
phenomenon that can severely limit the rate of metal removal.
Tlusty (1985) gives a detailed analysis of the dynamics
involved. He also describes "stability lobes," regions of
higher spindle speed where the axial depth of cut in machining
can actually be increased without the cut becoming unstable.
Figure 1.3 shows a schematic of the mechanism by which machine
tool chatter takes place. The phasing, e, of the waves left on
the machined surface by successive teeth on the cutter can be
such that the cutting force, F, is modulated into a vibration.

www.manaraa.com

10

F - CUTTING FORCE
h - CHIP THICKNESS

PHASING FOR UNSTABLE CUT

Y — — £ = 1 8 0

£ = 0
PHASING FOR STABLE CUT

PRESENT SURFACE

PREVIOUS SURFACE i

■ T - — I £
Y - DIRECTION NORMAL TO THE CUT
X - DIRECTION OF MODAL VIBRATION

Figure 1.3. Representation of the Chatter Mechanism.

Although a detailed discussion of the formulas that
describe chatter is beyond the scope of this work, the
expression for the limiting axial depth of a machining cut is
of interest:

blim = "I / (2 Ks R e tG]) (1.1)

Ks is the cutting stiffness (specific power) of the workpiece
and Re[G] is the negative real part of the oriented Transfer
Function (i.e. the mode in which the tool-spindle system will
vibrate during chatter) . The effect of blim is to limit the
amount of metal that can be removed for a given feed and
speed. An effective chatter detection scheme should not only
seek to avoid chatter, but also to increase blj[n.

www.manaraa.com

Figure 1.4 shows the real and imaginary parts of a single
degree of freedom Transfer Function. It can be seen that the
natural frequency, fn, the stiffness of the mode, k, and the
damping ratio, zeta, can be determined from the plot. Figure
1.5. a shows how the negative part of the Real Transfer
Function can be mapped into a stability lobe diagram by
varying the spindle speed. If the integer number of waves
between subsequent teeth is incremented, a complete lobing
diagram is generated. The regions of stability indicated in
Figure 1.5.b correspond to the so called "miracle speeds." It
has been found that higher metal removal rates can be achieved
if the spindle speed can be directed into one of these pockets
of stability.

Delio et al. (1990) discuss how chatter has limited the
ability of High Speed High Power (HSHP) milling technology to
increase the MRR, and describe a system for automatic chatter
detection and control using a microphone as the principal
sensor. This system will be implemented in the present
research and is described in more detail below.

Eman and Wu (1980) studied the on-line identification of
chatter in turning from a stochastic approach using a
dynamometer to measure the forces on the tool and an
accelerometer located on the lathe center. An ARMA model was
used to identify chatter. The problem with the stochastic
approach, which treats the sensed phenomenon as a pseudo
random "black box," is that no insight is provided into the

www.manaraa.com

12

AXIAL
DEPTH UNSTABLE

STABILITY
LUBECUT

TABLE

SPINDLE SPEED (RPM)

f/f

(a)

f/f = 1

f/f„

(b)

Figure 1.4. Transfer Function.
a) Real Part.
b) Imaginary Part.

(a)

AXIAL
DEPTH
□F

CUT

'STABLE'
REGIDN

S P IN D L E S P E E D (RPM)

(b)

Figure 1.5. Stability Lobes.
a) Lobe Generation.
b) Lobing Diagram.

www.manaraa.com

13
dynamics of the system. Also, often quite high order models
are needed to identify the signal, which limits the ability of
the system to respond in real time. One merit of the approach,
on the other hand, is that it can adapt to changing dynamics
of the cutting operation.

Since the dynamics of machine tool chatter are well
understood, many researchers have taken a deterministic
approach to the problem. In an early work, Week et al. (1975)
used a strain gage torque sensor mounted on the spindle
housing to detect chatter. The signal was passed through a
slip ring to the control system, which varied the spindle
speed to a stable cutting zone determined by vibration
measurements taken on the machine tool. The deterministic
approach requires that the dynamics of the machine tool be
accurately known, but parameters such as the amount of spindle
extension, the axial depth of cut, and the location of the
workpiece on the machine tool bed (which can vary during a
milling operation) can significantly affect the location of
stable speeds that can be predicted from stability diagrams.

A deterministic chatter recognition and control system
that does not rely on predetermined dynamic characterization
of the machine tool is described by Smith and Tlusty (1990)
and Smith and Delio (1989). The sound of the milling operation
was monitored by a microphone and processed into its frequency
spectrum. Using the fact that the chatter frequency usually is
close to the frequency of the most flexible mode of the tool-

www.manaraa.com

14
workpiece system, they found that adjusting the spindle speed
so that the fundamental tooth frequency equaled the chatter
frequency eliminated chatter by disturbing the regeneration of
waviness. Chatter was detected by filtering the spectrum of
the tooth frequency and its harmonics and comparing the
remaining peak to a threshold value. This scheme will be
included in the comprehensive supervision system.

Spindle torque overload detection is used to stop the
machining process if the spindle motor is about to stall due
to a very heavy chip load. Many machine tool controllers
provide the operator information on spindle speed and power by
monitoring the motor current and voltage; however, there has
been little effort on the part of researchers or machine tool
manufacturers in developing a torque overload system.

The spindle motor current has been used as a "sensor" to
detect tool breakage (Matsushima et al., 1982), but this
approach has not proved practical because the motor's inertia
causes it to act like a low pass filter, and only cutter
breakage at very low spindle speeds can be detected.

The torque overload detection scheme developed as part of
the present research uses an encoder on the spindle motor as
a speed sensor. The actual spindle speed is compared to the
commanded spindle speed. If the difference is greater than a
certain threshold, the cutting process will be stopped before
the tool is stalled in the workpiece.

www.manaraa.com

15
The principal focus of the present research will be the

creation of a machine tool supervision system, as suggested by
Tlusty and Smith (1989) in their paper on HSHP milling. The
discussion, above, of adaptive control schemes touched on the
similarity between A/C systems and machine tool supervision,
but a review of the literature shows that little has been
attempted so far in implementing a comprehensive system that
uses multiple sensors to regulate several different aspects of
the machining process.

Wright et al. (1990a) describe an open architecture
machine tool controller that they have developed as a pedestal
for both CAD/CAM research and for the development of sensor-
based control strategies. Their system shows a lot of promise,
in that its open architecture allows the easy integration of
sensors to control the feed and speed of the machine tool.
They describe an automatic workpiece locating scheme using a
touch-trigger probe. However, most of their efforts so far
have been in developing an expert system for workpiece
fixturing and tool path verification. The concentration is on
integrating the machine tool into an automated factory
environment rather than on the real-time monitoring and
control of the machining process.

Okafor et al. (1990) used neural networks to integrate
multiple sensor signals to estimate surface roughness and bore
tolerance in end milling. The cutting force (from a
dynamometer), the acceleration of the spindle housing (from an

www.manaraa.com

16
accelerometer) and the acoustic emission from the spindle
housing (from an AE transducer) were the inputs to a network
that was trained to correlate these signals to the loss of
accuracy caused by tool wear. Although the implementation of
this system was focused on monitoring a specific phenomenon,
rather than supervision of the machine tool, the approach (and
the experimental setup) shows promise as the beginnings of a
comprehensive supervision system.

Principe and Yoon (1990) describe an expert system
approach to machine tool supervision. This work is part of a
cooperative research program between the Machine Tool
Laboratory and the Electrical Engineering Department at the
University of Florida. In his research, Yoon (1990) developed
a Revolution-Oriented Residual Processing Algorithm (RORPA) to
detect tool breakage, and integrated the RORPA in a knowledge
based supervision system intended to process multi-sensor
information from a machine tool. He proposes a hierarchical
system where each channel of sensor input is processed for
feature extraction by a dedicated DSP chip. The data are then
sent to a symbolic processing environment where decisions are
made as to the nature of the disturbance, and where action is
taken. The machine tool controller would be one component of
the distributed system.

So far, Yoon's work has been implemented off line, using
data taken from cutting tests performed by Tarng (1988). One
objective of the present research program, being pursued by

www.manaraa.com

17
Walters (1991), is to provide a flexible interface to the
machine tool controller so that the expert system can be
implemented in real time, and a distributed processing
capability can be developed.

Outline of the Present Research

It can be seen that effective machine tool monitoring and
control schemes have been developed to deal with individual
disturbances to the cutting process. Some multi-sensor, multi
objective schemes have been developed that could be included
in a comprehensive supervision system, but to date no such
system has been realized. It is the primary objective of the
present research to create such a system.

An external supervisory computer will be interfaced with
the machine tool controller. A library of subroutines will be
created that permits each of the separate supervision schemes
to obtain the necessary sensor data, and to communicate with
the machine tool. As discussed in the previous section, the
monitoring and control schemes that will be integrated in the
supervision system are

1. Adaptive control (Tyler, 1989).
2. Broken tool detection (Tarng, 1988).
3. Chatter recognition and control (Delio, 1989).
4. Spindle torque overload detection.

Each of the existing schemes will be revised as needed to take
advantage of the enhanced capabilities for control of the

www.manaraa.com

18
machine tool. The system will be extremely flexible, and will
provide for the future networking of several computers for
expert system development and distributed processing.

As an extension of the on-line supervision system, a
portable off-line system will also be presented. It can be
used for characterization of the dynamics of the machine tool,
including data acquisition, Transfer Function measurement, and
the spectral analysis of chatter. Information provided by this
system could assist manufacturing engineers in identifying
dynamic phenomena that disrupt the cutting process.

The original contributions of the present research may be
summarized as follows:

1. Create a flexible interface between the machine tool
controller and the supervisory computer.

2. Develop a spindle torque overload detection system.
3. Integrate the separate monitoring and control

schemes into a comprehensive supervisory system.
4. Create a portable off-line machine evaluation system

to complement the on-line machine supervision system.

Chapter 2 of this dissertation is devoted to a detailed
description of the White-Sunstrand Series 20 Omnimil machine
tool and the Automation Intelligence FlexMate CNC controller.
The operation of the FlexMate Motion Co-Processor, which is
the heart of the controller, is outlined.

The monitoring and control schemes that comprise the
supervision system are described in Chapter 3. The discussion
focuses on the algorithms employed.

www.manaraa.com

19
Chapter 4 concentrates on the supervision system itself.

The machine monitoring sensors, and the hardware and software
aspects of the interface between the controller and the
supervisory computer, are detailed. Then the implementation of
the complete supervision system is described.

In Chapter 5, the off-line portable machine evaluation
system is described. The features provided in the program
PCDATA will be presented and explained.

Chapter 6 contains the results of experimental cuts, made
on the Omnimil, that exercise both the on-line supervision
system and the off-line machine evaluation system. Machining
of aluminum with High Speed Steel end mills and machining cast
iron with a carbide insert face mill will be studied.

Chapter 7 contains an assessment of the systems, along
with suggestions for future research that could exploit their
potential, or extend their capabilities. The need for machine
tool controllers to directly support the interfacing of
external supervisory computers is discussed.

www.manaraa.com

CHAPTER 2
THE MACHINE TOOL AND ITS CONTROLLER

A description of the White-Sunstrand Series 20 Omnimil
and the Automation Intelligence FlexMate CNC controller is
presented. Since the implementation of the supervision system
requires close integration with the machine tool controller,
the operation of the FlexMate Motion Co-Processor is discussed
in detail.

The White-Sunstrand Series 20 Omnimil

The White-Sunstrand Series 20 Omnimil Machining Center,
White-Sunstrand (1983a, 1983b), is a horizontal spindle
milling machine with three linear axes, a 360 degree discrete
rotary index table and a 30 position automatic tool changer.
Figure 2.1 shows a drawing of the machine tool, indicating the
standard X, Y and Z linear axis designations.

The three linear axes are driven by high speed armature
controlled D.C servo motors, and are positioned by ball screw
and nut assemblies. The maximum feed rate for the axes is 400
inches per minute. The ball screws are supported by angular
contact ball bearings. The X and Y axis slides ride on
rectangular ways by means of recirculating anti-friction

20

www.manaraa.com

21

ac

Figure 2.1. The White-Sunstrand Series 20 Omnimil
(After White-Sunstrand, 1983b).

www.manaraa.com

22
bearing units. The Z axis is mounted horizontally in the
column of the machine and is moved vertically by the Y axis
drive. Z axis motion is accomplished by means of a nine inch
diameter quill that is supported by two widely spaced linear
guide bushings.

The spindle is supported inside the quill at the nose end
by two precision angular contact ball bearings and in the rear
by one dual row roller bearing. The spindle is driven by a
variable speed 25 HP D.C. motor with a maximum speed of 5500
RPM. The spindle accommodates a #50 taper V-flange tool holder
that employs hydraulic axial tool retention and a positive
drive key.

Each linear axis is equipped with an incremental optical
encoder for position feedback to the servo drives. The
encoders output 2500 pulses per revolution of input shaft
rotation. The encoders are coupled to the drive screws, which
have a pitch of 0.5 inches. The effective resolution of the
linear positioning systems on each axis is +/- 0.0005 inches.

The D.C servo motors have tachogenerators for velocity
feedback and are powered through Silicon Controlled Rectifier
(SCR) drive amplifiers. Each axis servo is controlled by an
Axis Drive Control (ADC) assembly. The ADC servo boards use
the positional error analog voltage (E), that is output from

r

the CNC controller, and the tachogenerator voltage, to
generate the signal that moves the axes. Figure 2.2 shows a
schematic diagram of a typical linear axis ADC.

www.manaraa.com

3-PHASE
A r

TRANSFORMER7F

V IL O C IT T C O N TRO L A N D HAMF
OENERATOR

ERROR
SIONAL

GENERATOR
IR R O R S IO N A L

AM PL IFIE R

DC ANALOO
POSITION

ERROR
GENERATOR

PULSE
FORMER

■IAS
CONTROL

11S« DC
POWER
SUPPLY

FORWARD
PULSE

FORMER

U REVERSE
PULSE

FORMER

*OTNAM IC SR A R IN O ^
| CONTROL SE C T IO N

AXIS
OVERTRAVEL

LIMIT
SWITCHES

\
1
1

08C R
PCR
NCR

*
NCR

CONTACTS

TtCMWHI WUMI

Ir
I__________ J

MOW* AAMATWU CUMNWt

Figure 2.2. Schematic of a Typical ADC Servo Board
(After White-Sunstrand, 1983a).

PERCENT REGULATION C P 23
CNC CONTROLLER

FOLLOWING ERROR C P 53

OMEGA

R E D U C E RV E L O C I T Y

G A I N

SERVO
MOTOR

P O S I T I O N A L

G A I N

T A C H
TACH FORCING POT C P3D

D / A

ENCODER SIGNAL FROM SERVO

Figure 2.3. Block diagram of a Typical Axis Servo
Feedback Loop.

www.manaraa.com

24
The ADC servo boards provide access for adjusting the

positional gain, velocity gain and velocity feedback gain of
the X, Y and Z axis servo loops. Also provided is an Axis Test
Panel that gives convenient access to the raw positional
feedback voltages for each axis. Figure 2.3 shows a classical
block diagram of a linear axis positional feedback loop with
the ADC gain adjusting pots identified. It can be seen that
the ADC servo boards control the velocity loop of the drives,
while the CNC closes the positional loop.

The Automation Intelligence FlexMate Controller

The Omnimil was originally equipped with a Micro Swine
CNC controller. As part of the present research program, this
controller was replaced by a FlexMate CNC controller supplied
by Automation Intelligence (AI) in Orlando, Florida. This move
was made because the FlexMate provides a flexible and
relatively open architecture for customizing the control of
the machine tool. As discussed in Chapter 1, it is essential
that a sensor-based supervision system have real time access
to the machine control parameters of the CNC.

Figure 2.4 shows an outline of the control enclosure in
the Omnimil. The ADC servo boards and the Axis Test Panel
discussed in the previous section can be seen. The units
identified as REMOTE I/O BOARDS, 286 SYSTEM CO-PROCESSOR and
MOTION CO-PROCESSOR were installed as part of the AI FlexMate

www.manaraa.com

25

24 VDC
SUPPLY

A/ C

AIR CONDITIONER
24 VDC 16 BIT ADDRESSES

CIRCUITS L

12
TB

MOT I ON
COPROCESSOR

CMCP^

]

REMOTE
I/O BOARDS

2 TB

286
SYSTEM

COPROCESSOR
FOLLOW _
ERROR
ADJUST

X AX I S
SERVO BOARD

Y AX I S

SERVO BOARD

AX I S TEST
PANEL

FEEDBACK TB

Z AX I S
SERVO BOARD

B AX I S

SERVO BOARD

Figure 2.4. The Control Enclosure of the Omnimil Showing
the Installation of the FlexMate Controller.

www.manaraa.com

26
controller, and take the place of the Micro Swine controller.
The "FlexMate Motion Co-Processor Installation and Maintenance
Manual" (Automation Intelligence, 1987) describes in detail
the function of the individual controller components.

The Remote I/O Boards module is a chassis containing
several printed circuit (PC) cards that read inputs from the
machine (such as limit switches), and send output signals from
the controller to devices on the machine (such as the chip
conveyor). The inputs are read as 24 VDC 16 bit logic words,
and the outputs are in general 115 VAC signals. The principal
function of this module is to step up the working range of the
Motion Co-Processor from the 0.0 - 5.0 volt logic range to the
voltages required to read and activate devices on the Omnimil.

The System Co-Processor (SCP) is an 80286 8 MHz IBM
industrial computer. It has one megabyte of memory, an EGA
display adapter, a 30 megabyte hard drive, a 3.5 inch floppy
drive and a serial communications adapter with 4 ports. The
serial ports C0M1 and COM2 are reserved for communication with
the Motion Co-Processor. COM3 and COM4 are available for the
machine tool user. The SCP is used for loading system
software, managing the operator console screen display and
loading, editing and sending part programs to the Motion Co-
Processor. As will be described in the next section, it is
also possible to use the SCP to install application-specific
subroutines directly into the Motion Co-Processor, as well as
modifying the configuration of the Motion Co-Processor itself.

www.manaraa.com

The SCP uses the DOS 3.3 operating system. However, when
the CNC is in operation, a pseudo multi-tasking environment
called TASKVIEW is used. This system manages DOS, and divides
program execution time into 10 slices (called partitions) of
0.0625 seconds each. The Motion Co-Processor uses every other
two partitions, leaving the remainder for use by the machine
tool user for specific applications. As far as the present
research goes, however, the available processing time in the
SCP does not allow the supervision schemes to react quickly
enough to sudden phenomena such as tool breakage. For this
reason, an external computer must be used, instead of the SCP,
to implement the supervisory system.

The Motion Co-Processor (MCP), which communicates with
the SCP by means of the two 19.2 kilo baud serial links,
contains the PC cards that achieve the actual CNC control of
the Omnimil. These cards complete the positional feedback
loops by reading the encoders on the axis drives and sending
the positional error Ep, as an analog voltage, to the ADC
servo boards. The servo commands are updated each 0.002
seconds. Motion interpolation calculations are also performed
here. The interpolations are updated each 0.010 seconds, and
in between this time period the interpolations are themselves
interpolated. All relevant machine condition information is
updated to the CRT screen display, and to the Machine Function
Panel on the operator console, from this unit. Figure 2.5
shows a schematic of the complete FlexMate controller.

www.manaraa.com

28

OPERATOR

C0 N 5O L E

C0M1 1 9 .2 K BAUD

COM2 1 9 .2 K BAUD

SYSTEM CO-PROCESSOR

80288 PC/AT

30 MEG HARD DRIVE

TASKVIEW

DOG 3.30

FLO PPY

D R I V E

COM3

COM4 USER

REMOTE I /O BOARDS

SU PERV ISO RY

COMPUTER

MOTION CO-PROCESSOR

II a z a R fi m oz oz oz

ST
R aV) a

<
CDcc

u. 4 u. Ui Ui U i j F (/)

Figure 2.5. A Schematic of the FlexMate CNC Controller.

FI s x M a b sv

FEEO

JOG

CONTROL ON

E-STOP□
Figure 2.6. The FlexMate Operator Console and Machine Function

Panel (After Automation Intelligence, 1989).

www.manaraa.com

29
Figure 2.6 shows a sketch of the FlexMate operator

console. This station includes the Machine Function Panel
(MFP) , which is to the right of the CRT. The operator monitors
the state of the machine tool by selecting various information
windows available on the CRT. Part programs can be selected,
edited and executed. The MFP provides the operator control of
the various machine operations, such as changing the feed rate
override. The function of the individual controls on the
console is outlined in the "FlexMate Machining Center
Operator's Guide" (Automation Intelligence, 1989).

The FlexMate Motion Co-Processor

The CNC control of the Omnimil is accomplished by the
FlexMate Motion Co-Processor (MCP). Figure 2.7 shows a system
schematic of the controller components. The Z-80 Multi Control
Card (ZMC) manages communication between the MCP and the
System Co-Processor (SCP) using C0M1 and COM2. C0M1 is used
for displays and status on the Operator Control Console, and
COM2 is reserved for data and commands. Communication to the
Machine Function Panel (MFP) is through an extra 19.2 kilo
baud serial link. The ZMC also controls a 3.5 inch floppy
drive that is located in the MCP chassis.

The ZMC manages data on the I/O bus that connects the
different PC cards inside the MCP chassis, and communicates
with the Central Processing Unit (CPU) through an internal

www.manaraa.com

30

O

. OK

*5
a ♦ 15

*3 * -1 5

♦ / -1 3 r
♦ 24

p o w e r o s T m e u n o N
MACHINE FUNCTION PANEL

B AC K

IN T . P W R .

T O 3 .5
FLO PPY

TO AT COM PUTER
SERIAL COM
PORT NO. 1. 2

C P U

P R O C E S S IN G
A X IS*(10) D RIV E(C E N T R A L

A X IS*
(1 C I * DRIVE

E N C *

6 S R N C R D Y
RELA Y C O N T A C T S

C O N T R O L 16
□ C I S

IN P U T Spcrs
16 A C I 'S (D C IN PU T)

(A C IN P U T)

P C O ’ S O U T P U T S
DC O U T P U T)

(A C O U T PU T !
16 A C O 'S

REM OTE I/O

I N PU T S
I /O IN T E R F A C E 0 C 3 2

O U T PU T
DC 3 2

4 ANALOG• A P P L IC A T IO N 0 E P E N 0 E N T

Figure 2.7. Schematic of the Motion Co-Processor
(After Automation Intelligence, 1987) .

www.manaraa.com

31
19.2 kilo baud serial link. The CPU, which is the heart of the
motion co-processor, consists of three cards. The Static Ram
Board (SRB), which has 512 kilo bytes of battery protected
memory, stores the executive program and data for operation of
the machine tool. The Turbo Arithmetic Processor Card (TAP) is
responsible for decoding and execution of the CPU instruction
set. The Micro-Support Processor Card (USP) assists the TAP in
the execution of the instruction set, and also handles data
transfer through the CPU bus and through the serial link to
the ZMC. The TAP and USP cards function together to make up
the computer that controls the machine tool. The MCP computer
is effectively a 16 bit machine with an on-board memory of
256K words.

The System Timing and Relay Card (STR) provides system
timing, and the reference voltages for the axes. The board
also contains the circuits for remote starting the CPU by the
CONTROL ON pushbutton on the operator panel, as well as a
"Deadman Circuit" that generates an EMERGENCY STOP if the CPU
fails to reset a timer every 0.035 seconds.

The Power Monitor Card (PMC) monitors the +/- 15.0 VDC
and + 5.0 VDC power supplies in the MCP. The Floppy Drive
Board (FLB) contains the 3.5 inch floppy drive. This drive is
used for saving and loading an image of the SRB memory,
including the current configuration of the controller. The
Analog Input Card (ANI) is a 4 channel, 16 bit, +/- 10.0 VDC
Analog-to-Digital converter. Two of its channels are presently

www.manaraa.com

32
used to read the spindle power output. The other two channels
are available.

Feedback from the optical encoder on each axis drive is
obtained by a Dual Encoder Interface Card (ENC). There are
three ENC's in the MCP. They monitor the X Y and Z axis
positions and present the information on the I/O bus to the
CPU on demand. The cards are controlled by the CPU, and output
the positional error command (Ep) computed by the MCP through
a 16 bit Digital-to-Analog converter. This signal is sent to
the ADC servo boards.

The Input/Output Converter Driver Card (IOQ) is used to
interface up to 64 bits of management and operational data
between the CPU and the REMOTE I/O card cage that is
interfaced to the machine tool. There are two IOQ boards used
in the FlexMate for MCP control of the Omnimil, operating in
the 0.0 - 5.0 volt TTL logic range. The remote I/O card cage
contains a number of Point Contact I/O Cards (PCI/PCO). These
cards provide the interface between the TTL logic of the MCP
and the 24 VDC and 115 VAC signals used in the machine tool.

The interface between the MCP and the external computer
containing the supervision system uses a third IOQ card. This
card is used to establish a 32 bit parallel interface for
receiving machine tool status information from the MCP and
requesting machine functions such as FEED HOLD from the MCP.
The ability to interrupt the MCP so that data can be
transferred through the IOQ interface is provided by the Fast

www.manaraa.com

33
Input Board (FIB) . The FIB is an 8 bit maskable interrupt
generator that is software compatible to the IOQ. It can
interrupt the MCP within 0.002 seconds, and the interrupt can
be pointed at a designated application program in the MCP.

There are two event areas within the MCP, called OEM_MAIN
and OEM_SYNC, where user-supplied Logic Control Language (LCL)
programs can be activated in the CPU when predetermined bit
patterns appear on the FIB. The supervision system interface
software utilizes the OEM_MAIN event area to enable
communication between the remote supervision computer and the
MCP. The OEM-SYNC area is used to implement a special fast
stopping routine that is needed by the supervision schemes.

The MCP is an interrupt driven system. There are 32 tasks
ranging from the lowest priority, level &H0, to the highest
priority, level &H1F. When an interrupt occurs, the task
scheduler is invoked. It looks for the highest priority task
that is both active and able, and executes it. Table 2.1 lists
the FlexMate task structure as installed on the Omnimil.

MAIN (level &H3) is a low priority event area that runs
continually in the background. SYNC (level &H1D) is a high
priority foreground task that interrupts MAIN every 0.010
seconds. LCL code in the SYNC area must execute to completion
within the 0.010 seconds. Code in the MAIN area, however, is
continued from the point where it was suspended after each
0.010 second time out. The MCP memory available for OEM_SYNC
code is 2 kilo bytes. This area is intended for programs that

www.manaraa.com

34
are short and which must run to completion within 0.010
seconds. The memory available for OEM_MAIN code is 64 kilo
bytes, and the execution time can be as long as the user
requires.

Table 2.1. Flexmate Interrupt Task Structure

IF BUS TIMEOUT F RAM DISK PORT 1
IE (NOT USED) E RAM DISK PORT
ID SYNC D ZMC READ HANDLER #1
1C DNC HANDLER C ZMC WRITE HANDLER #1
IB ZSC READ HANDLER #2 B ZMC MODEM HANDLER #1
1A ZSC WRITE HANDLER #2 A MFP OUTPUT
19 ZSC MODEM HANDLER #2 9 OPERATOR PANEL KEYBOARD
18 RAM DISK PORT 3 8 OPERATOR PANEL OUTPUT
17 RAM DISK PORT 0 7 (NOT USED)
16 DISKI PORT1 HANDLER 6 (NOT USED)
15 DISKI PORTO HANDLER 5 OPERATOR PANEL INPUT
14 DISK2 PORT1 HANDLER 4 ZMC READ TASK
13 DISK2 PORTO HANDLER 3 MAIN
12 DISK READ TASK 2 PLC PUNCH/LOAD
11 CONFIGURATION PACKAGE 1 CRT APPLICATION
10 FMS TASK 0 POWER ON SEQUENCE

The FlexMate provides a program development environment
for writing LCL programs. The language is a generic version of
the C language. The source code is compiled, assembled and
linked into the proprietary executable code that will run on
the MCP computer. A library of "Window Functions" is supplied
that gives the programmer access to most of the critical
parameters of the CNC. The interface and the fast stopping
routine make use of several of these functions.

www.manaraa.com

35
The memory of the MCP is divided into several discrete

regions. High memory is reserved for the MCP executive program
that actually performs the machine motion control, including
interpolations. Also, programs that run in OEM_SYNC and
OEM_MAIN are assigned space in this area when they are loaded
into the MCP. The System Data Table, starting at address
&H2C00, consists of variables that can be read and changed by
an LCL program. The System Constant Table, starting at address
&H1000, contains flags for the interrupt logic as well as the
definitions of the FlexMate's I/O space and the motion control
tables. This area may be considered the heart of the MCP. The
Operating System, which starts at &HOOFF, contains the task
and I/O scheduler and the interrupt vectors. The Zero Page
area, which begins at &HOOOO, contains the system pointers and
counters.

The flags and tables that show the status of the drive
and motion programs in the MCP are collected into a master
table in the System Constant Table called "MOSTAT" at address
&H17DD. Figure 2.8 shows a simplified block diagram of how the
positional feedback loop is closed inside the MCP. The
variable names in the block diagram refer to per-axis tables
that are contained in MOSTAT. The motion interpolator outputs
an incremental position command to the table XREF (the
absolute axis reference is held in a table called XCOMM).
Feedback from the axis encoders is processed into engineering
units and held in the XFBK table. XERR is the difference

www.manaraa.com

36
between the commanded incremental position and the feedback
position. The following error values in XERR are converted to
increments for the Digital-to-Analog converter, and are output
to the ADC servo boards as the analog voltage Ep, which is
essentially a velocity command.

MCP CNC

AX I 5
ENCODER

NC BLOCKS FROM SCP

XDACBASXREF XERR

I N T E R P O L A T O R

Figure 2.8. Block Diagram of the MCP Positional Loop.

It can be seen that in allowing the machine tool user to
read and change many parameters of the CNC controller, the
FlexMate provides an architecture that is open enough for the
development of a machine tool supervision system. The fast
stopping routine mentioned above will be described in Chapter
3, and details of the interface between the MCP and the
supervisory computer will be presented in Chapter 4.

www.manaraa.com

CHAPTER 3
THE MACHINE MONITORING AND CONTROL SCHEMES

Before the implementation of the supervision system is
presented, it is important to describe the individual machine
monitoring and control schemes that will be employed. With the
exception of the Spindle Torque Overload Detection System,
which was developed as part of the present research, the
schemes are the result of previous research programs conducted
at the Machine Tool Laboratory of the University of Florida.
A special fast stopping routine that is used by all the
schemes is also presented.

Adaptive Control System

The Adaptive Control (A/C) system was developed by Tyler
(1989). One purpose of the system is to allow the tool to be
moved at rapid speeds when there is no metal cutting. When the
tool encounters the workpiece, the impact is detected and the
axis feed is stopped by an fast stopping routine (described
below) . After the tool feed has stopped, the servo loop is
reconnected and the adaptive control loop begins regulating
the cutting feedrate.

37

www.manaraa.com

38
The adaptive control loop increases the feed rate during

the actual cutting until either the specified feed rate or the
vibration limit is reached. The fast stop is also called if
the vibration exceeds the specified threshold in the adaptive
control loop. The adaptive control loop runs constantly during
the cut. If the vibration falls below a lower threshold,
indicating a non-cutting condition, the program returns to the
fast transient mode. Figure 3.1 shows a flow chart of the
Adaptive Control system.

The hardware of the A/C system will be described in
detail in Chapter 4. The system was originally implemented
using a Kistler model 9067 table dynamometer to measure the
cutting force, but for the present research a displacement
signal was used instead. This change of sensors was made
because the dynamometer has been shown to distort frequencies
above about 70 Hz in the machine X axis direction, and above
about 200 Hz in the machine Y axis direction (Smith, 1985;
Tarng, 1986; Tyler 1989) . A sensor ring containing four
inductance probes (two for the X axis and two for the Y axis)
has been fitted to the spindle housing. A signal conditioning
system presents the X and Y axis vibration signals to a data
acquisition board in the supervision computer.

Originally, data acquisition for the A/C system was
externally triggered and timed by the pulses from a variable
reluctance magnetic pickup that read the passage of the teeth
of a 72 tooth gear attached to the spindle. For the

www.manaraa.com

YES

NO

NO

YES

YES
V I B > V IB

D I FF L IM

NO

Y E S
V I B > 1 . 5 * V I B

NOM

NO

YES
V IB C t - 1 D = 0

MAX

NO

V I B
D IF F

ADAPTIVE LOOP

=VIB-VIB
READ V IB

MAX

TRANS I ENT LOOP

F E E D = 4 * F P T

READ V IB
MAX

REMOVE EP FROM SERVO

FAST S T O P P IN G ROUTINE
SET XCOM=CL FEED=0

Figure 3.1. Flow Chart of the Adaptive Control Algorithm
(After Tyler, 1989).

www.manaraa.com

40
implementation of the supervision system, a 240 line encoder
attached to the spindle shaft was used instead of the pickup
and gear. This change was made because of the improved
resolution in synchronizing the data sampling that is possible
from the encoder, as well as the advantage of moving the
sensor away from the cutting process.

Control of the axis feedrates, based on the vibration of
the cutting process, is accomplished by varying the percentage
of feedrate override using one of the supervision subroutines
created as part of the present research. The redesign of the
A/C system to use the new sensors, and the supervision
subroutines, is described in Chapter 6.

The Fast Stopping Routine

The fast stopping routine used in the A/C system was
originally implemented as a hard-wired interface to the CNC
controller. A relay was used to break the line carrying the
following error command (Ep) to the servos. After the drive
had stopped, a small voltage was used to remove the remaining
following error, and the control loop was reconnected. As part
of the present research, the routine has been redesigned to
take advantage of the interface to the MCP.

Figure 3.2 shows a flow chart of the Fast Stopping
Routine. The algorithm uses the interface software iface.c,
installed in the OEM_MAIN area of the MCP, and a specialized

www.manaraa.com

41

NOYESNO
A XFBK < 5 CLEAR

YES

NO
(XREF—XFBK|<1

YES

XINHDPE = -1
(ZERO VOLTS TO SERVO)

FEEDHOLD = ON
FEEDRATE = 1%

XINHDPE = 0
FEEDRATE = NEW VALUE

FEEDHOLD = OFF

XINHDPE = 1
(OUTPUT SMALL VALUES

TO THE SERVO)

Figure 3.2. Flow Chart of the Fast Stop Algorithm.

routine, stop.c, installed in OEM_SYNC. The programs are
listed in Appendix A, and complete details of the routines are
described in the report by Wells (1991a).

When the FastStop subroutine is called, the function
called iface_interrupt, running in OEM_MAIN, stops
interpolation by issuing an internal feedhold to the MCP. The
X and Y axis drives are disconnected from the CNC, and zero
volts are written to the servos, by setting the XINHDPE table

www.manaraa.com

42
flag to -1. When the fast_stop_flag is set equal to 1, the
code in OEM_SYNC takes over on the next SYNC pass. The routine
waits for the axes to slow down by monitoring the change in
the feedback position using the XFBK table. The feedhold is
held on until the ClearFastStop subroutine is executed.

When the fast stop is cleared, the XINHDPE table flag is
set equal to 1, which enables the axis D/A converters for
output. A small voltage is output to move the servos until the
CNC positional error (which is the difference between the XREF
and XFBK tables) is within +/- 0.001 inches. When the axes are
in position, XINHDPE is set equal to 0, which reconnects the
servos to the CNC position command generator.

The fast stopping routine is useful for all the machine
supervision schemes, since it allows the feed to be stopped
much faster than is possible by a conventional feedhold. In
Chapter 6, the performance of the routine will be evaluated as
it is exercised as part of the supervision system.

Tool Breakage Detection System

The Tool Breakage Recognition system (Tarng, 1986, 1988)
is designed to stop the axis feeds immediately when tool
breakage occurs. A flow chart of the algorithm is shown in
Figure 3.3. The data acquisition is triggered and timed
externally from the spindle encoder, and the vibration of the
tool is sensed by inductance probes. It can be seen that the

www.manaraa.com

IN PU T C U T T IN G PARAMETERS

INPUT DISPLACEMENT
THRESHOLD CTHRESH3

Dl FFCJD>THRESH
Dl F F C J —1 5 < -T H R E S H

YES

NO

YESD IF FC JD < -T H R E S F T

D I F F C J - 1 3 ^THRESH

NO

FAST STOP

SUBTRACT RUNOUT
C AVG=AVG—RUNOUT3

CALCULATE AVERAGE
D I SPLACEMENTS C^VG^

CALCULATE SP IN D L E RUNOUT
FOR EACH TOOTH PERIOD

FOR CONSECUTIVE TOOTH PERIOD S
D IF F CO=A V G C O -A V G C 1 -1 3

BEGIN CUTTING OPERATION

Figure 3.3. Flow Chart of the Broken Tool Detection
Algorithm (After Tarng, 1938).

www.manaraa.com

44
same sensor signals used in the A/C system are used for the
tool breakage system. If tool breakage is detected, the
program calls the supervision subroutine that issues a fast
stop command to the CNC controller.

The scheme has two main parts, spindle runout
determination and tool breakage detection. The spindle runout
section samples spindle vibration in synchronization with the
tool rotation while the tool is not cutting. The samples are
taken following a once-per-revolution trigger signal, and the
displacement values are averaged for each tooth period.

The tool breakage detection portion of the program
samples and averages the spindle vibration in the same way as
the runout portion. The runout values are subtracted from the
new values to separate the cutting deflections from the
runout. The difference between consecutive average deflection
values are then taken as an indication of how the forces on
the tool are changing from tooth period to tooth period. For
an undamaged cutter, the difference values will remain between
upper and lower threshold limits. When a cutter is damaged,
however, the consecutive difference values will exceed both
the positive and negative threshold limits and the algorithm
issues a fast stop command.

As a broken tooth enters the cut, its chip load is
smaller than for the unbroken teeth, which results in a sharp
change in the spindle deflection. When the next unbroken tooth
enters the cut, it has an increased chip load which results in

www.manaraa.com

45
an opposite change in the spindle deflection. Figure 3.4 shows
a detail of the first difference of the vibration signal from
an eight tooth 4.25 inch diameter face mill cutting cast iron
with one damaged insert. The signature of tool breakage can
clearly be seen. Transients such as entry to and exit from the
workpiece, hitting a hard spot in the material, or milling
over slots have been shown by Tarng (1988) not to produce this
effect and will not be mistaken as tool breakage.

FIRST DIFFERENCE BROKEN CUTTER
5 .0

2 .5

0.0

- 2 . 5

- 5 . 0
300270 280 290250 DIFFERENCE No.

Figure 3.4. Detail of the First Difference of the Vibration
Signal from a Damaged Face Mill.

Adaptive thresholding for the system is currently being
studied in the Machine Tool Laboratory (Vierck, 1991).
Adaptive signal processing schemes and digital filtering are
also being studied as ways of identifying the characteristic

www.manaraa.com

46
tool breakage signal. The distributed supervision system being
developed by Walters (1991) also includes a real time
application of the RORPA algorithm of Yoon (1990).

Chatter Recognition and Control System

Smith (1985, 1987) studied forced vibrations and chatter
in high speed milling, and developed a strategy for chatter
regulation by spindle speed selection. The real time chatter
recognition and control system was created by Delio (1989),
and was implemented on a vertical milling machine,
manufactured by Lamb, using a 9000 RPM Setco spindle. The CNC
controller was a General Electric Mark Century 2000. The
scheme was further developed by Keyvanmanesh (1990) to take
advantage of the 25000 RPM range of a Setco experimental high
speed spindle. A simplified flow chart of the algorithm is
presented in Figure 3.5.

The system works by sampling the cutting noise from an
audio microphone near the machine. Two microphones could be
used for directionalization if the system is affected by noise
from other machines. A Digital Signal Processor (DSP) performs
a Fast Fourier Transform (FFT) on the microphone signal in
real time. The supervision computer then processes the FFT
signal, filtering the tooth frequency and its harmonics, and
determines the frequency of chatter if it exists. The same
fast stopping strategy used in the A/C system is used to stop

www.manaraa.com

47

KEY

KEY

ACTIVE MODE

A.M. ABORT

CHATTER

Q U I T

NITIALIZATION

ACQUISITI ON
DATA

PARAMETER
SET

AUTO
THRESHOLD ING

TRANSPARENT
MODE

COMPUTE FFT AND
FILTER SPECTRUM

SPEED & FEED
ADJUST

FAST STOP

Figure 3.5. Flow Chart of the Chatter Recognition and Control
Algorithm.

www.manaraa.com

48
the feed. This minimizes the amount of bad surface that is
generated. Then, based on the relationship between chatter and
spindle speed described by Smith (1987), the algorithm
commands a new spindle speed to the machine tool. The feedrate
is also increased in order to maintain the same feed per tooth
on the cutter.

In order to detect chatter it is essential to be able to
reject the runout and tooth frequency harmonics that are seen
in the spectrum of the cutting signal. For this reason, the
spindle speed must be accurately known in real time. Also, the
means of controlling chatter relies on setting the spindle to
a speed such that the tooth frequency of the tool equals the
chatter frequency that was detected. A digital tachometer that
can resolve speeds to +/- 2 RPM is used in the supervision
system to sense the spindle speed on the Omnimil.

Figure 3.6 shows an example of the spectrum of a stable
machining cut. The data was sampled by the off-line machine
evaluation program described in Chapter 5. The tooth
frequency, which is itself an harmonic of the spindle
frequency, can be clearly seen. Figure 3.7 shows the spectrum
of an unstable cut made with the same tool. The chatter, which
has a frequency of 3623 Hz, was caused by increasing the axial
depth of cut beyond the limiting value for stability, bljm. It
can be seen that the chatter peak and its frequency could now
be clearly identified in the spectrum if the tooth frequency
and its harmonics were filtered.

www.manaraa.com

CHANNEL 0-SPECTRUHMICROPHONE
0.38

- TOOTH FREQUENCY

0.Z8

0.19 <— HARMONIC

uajL JlUikJhA0.00 0 500 1000 1500 2000 2500 3000 3500 4000FREQ (Hz)
Figure 3.6. Spectrum of a Stable Machining Cut.

CHANNEL 0-SPECTEUM

- TOOTH FREQUENCY

0.24
CHATTER FREQUENCY — >

- HARMONIC

0.08

0.00 0 500 1000 1500 2000 2500 3000 3500 4000FREQ (Hz)
Figure 3.7. Spectrum of an Unstable Machining Cut.

www.manaraa.com

Spindle Toroue Overload Detection System
50

As part of the present research, a monitoring scheme was
developed that senses when the spindle motor is about to
stall. This problem occurs when the tool is cutting too heavy
a chip load, and can damage both the tool and the workpiece.
A flow chart for the algorithm is shown in Figure 3.8, and a
listing of the system software is presented in Appendix B.

YES

CNC

SPEED
CHANGE

YESNO
A SPEED > LIM

NO

FAST STOP

READ CNC SPEED

INITIALIZATION

CALCULATE LIM

READ ENCODER

Figure 3.8. Flow Chart of the Spindle Torque Overload
Detection Algorithm.

www.manaraa.com

51
The output torque of an armature controlled DC motor is

produced by the current in the armature. This torque
accelerates the drive inertia, and must overcome the external
load torque and the losses due to windage and friction. This
relationship may be expressed as

T = Kti = Ja + Bo + Tt (3.1)

where T is the motor torque, Kt is the motor torque constant,
i is the armature current, J is the motor and drive inertia,
a is the motor acceleration, B is the loss coefficient, a is
the motor speed, and Tt is the load torque. Usually the
windage and friction losses are small compared to the other
parameters and may be neglected. Rewriting the above equation
with the loss term deleted and solving for acceleration gives

a = (T - Tt) / J (3.2)

This expression shows that monitoring the speed change gives
a direct indication of the spindle motor torque.

The scheme works by reading the CNC spindle speed in real
time using one of the supervision subroutines. The speed
threshold is input as a percentage of the CNC commanded speed.
It was determined after watching the speed variation during
various machining cuts that a 95 percent limit will not cause
any false triggers of the system.

www.manaraa.com

52
The actual spindle speed is read and compared to the

limit speed, and if the speed change is beyond the threshold
then a fast stop command is issued to the Motion Co-Processor.
When the operator clears the fast stop, the system returns to
its monitoring mode. The scheme is designed to track
legitimate speed changes commanded from CNC code blocks, the
operator console or from the other supervision schemes, so
that only a speed change caused by an impending stall will
trigger the fast stop.

The spindle motor on the Omnimil has tachogenerator
feedback, but the high AC component of this voltage makes it
unsuitable for sensing the spindle speed. In order to
implement a tachometer in the supervisory computer, the pulse
train from the 240 line spindle encoder is passed through a
divide-by-240 counter, producing one pulse per revolution.
This signal is also used to trigger data acquisition for the
other supervision schemes, as will be described in Chapter 4.

Since the standard timer available in the supervisory
computer can only resolve 0.052 second intervals, a strategy
was devised to strobe the printer port with the once-per-
revolution signal after it was converted from a TTL pulse
train to an impulse train that could be read by the port. By
redirecting the interrupts from the DOS clock and the LPT1
printer port, the signal is processed into a digital
tachometer that can resolve speeds to +/- 2 RPM, and which has
an effective operating range up to 5000 RPM. John Frost of

www.manaraa.com

53
Manufacturing Laboratories contributed the interrupt code and
circuits necessary to implement the tachometer.

In Chapter 4 an inventory of the sensors and data
acquisition hardware needed for the supervision system will
show that the individual schemes share most of the same sensor
inputs. It will also be shown that only a relatively small
number of supervision subroutines are needed to provide the
necessary control of the machine tool.

www.manaraa.com

CHAPTER 4
THE ON-LINE MACHINE SUPERVISION SYSTEM

The actual implementation of the on-line supervision
system will be described in this chapter. The sensor signals
required for the system will be discussed, along with the data
acquisition hardware used in the supervision computer. The
hardware layout of the interface between the computer and the
FlexMate controller will be described, as well as the
interface protocol used between the CNC controller and the
supervisory computer. The supervision subroutines will then be
presented, along with a description of overall system.

An Inventory of the Sensors

Each machine supervision scheme described in Chapter 3
needs its own sensor input. The schemes have been designed,
however, to make use of shared sensor data. The adaptive
control system and the tool breakage system both need X and Y
axis vibration signals, as well as the spindle speed for data
sampling. The torque overload system needs only the spindle
speed. The chatter control system needs a microphone signal
and the spindle speed. Figure 4.1 shows the placement of the
sensors, and their connection to the supervisory computer.

54

www.manaraa.com

S
U

P
E

R
V

IS
IO

N

S
Y

S
T

E
M

55

a
LU□

□ □ □

d o i / a i d

saaoad aoNvionaNi

3N O H d O d O I IA|

O O O

Fi
gu
re

4.
1.

Di
ag
ra
m

of
the

On
-L
in
e

Ma
ch
in
e

Too
l

Su
pe
rv
is
io
n

Sy
st
em
.

www.manaraa.com

56
A sensor ring that contains four Mac-Euro inductance

probes is used for measuring the X and Y direction vibrations
on the Omnimil. Two probes measure the X axis vibration, and
two measure the Y axis vibration. The ring is mounted on the
spindle quill, and picks up the vibration of the tool holder
relative to the quill. It has been shown that this location
for a vibration transducer, although it does not directly
measure the vibration of the tool relative to the workpiece,
gives an accurate indication of the vibrations generated by
the metal cutting process (Tarng, 1988).

The resolution of the inductance probes has been
determined to be 17.5 microns per volt, and their bandwidth is
0 to 3000 Hz. The signals from the probes are pre-processed by
a Mac-Euro MEB-1210 signal conditioning board, which can also
compute the magnitude of the vector sum of the X and Y axis
vibrations. The signals are sampled by the Analog-to-Digital
data acquisition board in the supervision computer.

The spindle encoder is a BEI Chatsworth model 84C, 240
line, incremental optical encoder with a 1400 cycle resolution
and a maximum slewing speed of 5000 RPM. It is attached
directly to the spindle shaft in the rear of the Omnimil. The
240 pulse per revolution signal is used as an external clock
for the data acquisition. Output of the encoder is also
processed through a divide by 240 counter circuit, giving a
once per revolution pulse train. This signal is used for
external triggering of the data acquisition. The two signals

www.manaraa.com

57
together can thus be used to synchronize the data acquisition
to the rotation of the cutting tools. The once per revolution
signal is also used to monitor the spindle speed, as described
in the discussion of the torque overload system in Chapter 3.

The microphone used for chatter detection is a Realistic
model 33-2011 condenser microphone with a frequency response
band width of 20 to 13000 Hz. Machine tool vibrations can be
effectively measured from audio signals if the noise of
adjacent machines can be excluded (Delio, 1989) . The advantage
of using a microphone is that it does not need to be
physically connected to the machine tool. It is also possible
to use the vibration signals from the inductance probes to
detect the onset of chatter, but the bandwidth of the probes
limits their ability to resolve chatter frequencies above 3000
Hz. Since the microphone signal range is less than 500 mV, a
variable gain amplifier is used to boost the signal to the +/-
10 volt range of the data acquisition board.

Data acquisition for the sensor signals is by a Data
Translation model DT-2818 A/D-D/A board (Data Translation,
1988). The DT-2818 provides four single ended Analog-to-
Digital (A/D) input channels (simultaneously sampled and
held), two Digital-to-Analog (D/A) output channels, and two
eight bit Digital Input/Output (DIO) channels. It has been
configured to have A/D and D/A input ranges of +'/- 10 volts.
The DT-2818 has 12 bit digital resolution, which means that
the voltage resolution is 20 volts / 4096 = .00488 volts.

www.manaraa.com

58
The DT-2818 can sample data in three basic modes. In the

immediate mode, single data values are read each time the
board is activated. In the block mode, a specified number of
samples are taken, with the conversion rate governed by the
speed of the sampling loop in the host computer. In the Direct
Memory Access (DMA) mode, the sampling rate is limited only by
the performance of the data acquisition board. The DT-2818 is
capable of a maximum theoretical data throughput of 27.5 kHz
in the DMA mode. Specific aspects of DMA data acquisition are
discussed in the next chapter.

The FFT computations required by the Chatter Recognition
and Control system are performed by an Athena DUAL-32 digital
signal processing (DSP) board. The DSP board is installed
inside the supervision computer, and executes an FFT algorithm
that has been coded directly into its processor. The speed of
the processor makes it possible to perform real time FFT
calculations on windows of data sampled by the DT-2818 board.

As well as sampling signals from the sensors, the
supervision system must also monitor parameters from the
machine tool itself. The majority of these values are known to
the FlexMate controller, and can therefore be read by the
supervision subroutines. However, if future development of the
system requires sampling of analog signals from the machine
tool, such as servo tachometer voltages, then extra data
acquisition channels could be provided by adding a second DT-
2818 board, or by substituting a data acquisition board that

www.manaraa.com

59
has a higher channel density (and perhaps a faster DMA data
throughput).

Table 4.1 summarizes the sensor and machine parameter
inputs that are needed by the supervision system. It can be
seen that a relatively small number of sensor inputs are
needed to implement the system. Of course, different sensors
could be used depending on the requirements of specific
control strategies and machine applications.

Table 4.1. Sensor Inputs Required by the Supervision System.

SENSOR LOCATION SUPERVISION
SCHEME

Encoder Spindle Shaft All
Inductance Probe
(X and Y Axis)

Spindle Housing A/C, Broken Tool

Microphone Near
Tool/Workpiece

Chatter
Recognition

The Interface Hardware

As mentioned in Chapter 2, the Fast Input Board (FIB) is
supplied with the FlexMate controller as a means for the
machine tool user to interface with the Motion Co-Processor
(MCP). The FIB is software compatible with the Input/Output
Converter Driver Card (IOQ). It is the combination of the FIB
and IOQ boards that provides the hardware capability of
interrupting and communicating with the FlexMate MCP. The IOQ

www.manaraa.com

60
and FIB boards communicate with the MCP using the I/O bus
inside the MCP card cage (see Figure 2.7).

Figure 4.2 shows a diagram of the interface between the
supervisory computer and the MCP in the FlexMate. The physical
connections are made through a distribution box that is
mounted inside the control enclosure of the Omnimil. The
computer, which is a 6 MHz 80286 IBM AT with a numeric co
processor, has a 32 bit Data Translation DT-2817 digital I/O
board installed. Ports 0 and 1 are enabled for output and
ports 2 and 3 are enabled for input. Each port has eight bits.

Bit 7 of port 1 is connected to bit 0 of the FIB board in
the MCP. This is the FIB INTERRUPT line that signals the MCP
that the supervisory computer is requesting attention. Since
the FIB operates on 24 volt logic, the TTL output of the
computer is used to switch a relay circuit that passes 24
volts when activated (Tyler, 1989).

There are four 16 bit ports on the IOQ board. The
interface uses only two of them, port D which is enabled for
input and port E which is enabled for output. Data transfer is
synchronized by the ACKNOWLEDGE bit on the supervisory
computer side and the TRANSMIT READY bit on the FlexMate side.
Data transfer consists of sending information in single byte
(8 bit) packets from port 0 on the computer to port D on the
IOQ, and from port E on the IOQ to port 3 on the computer. In
the following section, the actual communication protocol will
be outlined.

www.manaraa.com

Figure 4.

DT-2S17

PORT 1

PORT 0

PORT 2

PORT 3

7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
0
7
6
5
4
3
2
1
□

F I B INTRPT

ACKNOWLEDGE
OUT_7
O U T 6
OUT_5
OUT_4

O U T 3
OUT_2

OUT_1
O U T O

TRANSFER READY
WRITE
READ

I N_7
I N_6
I N_5
I N_4
I N_3

I N_2
I N_1
I N_0

IOQ

.15
14
13
12
11
10
9
B PORT D
)
B
5
4
3
2
1
0

.15
14
13
12
11
10
9
8 PORT E
7
6
5
4
3
2
1
0

2. Hardware Configuration of the Supervision
Interface.

www.manaraa.com

62
The Interface Software

The software that handles the interface on the FlexMate
side is called iface.c, and is installed in the OEM_MAIN area
of the MCP as described in Chapter 2. The program pciface.c is
the corresponding interface and supervision software in the
supervisory computer. Both programs are listed in Appendix A,
and are described in detail in the report by Wells (1991a).
Communication is always initiated by the supervisory computer,
and the actual data transfer is coordinated by the code
running in the MCP. The low-level communication protocol used
in the programs was designed by Walters (1991).

With the exception of the FastStop, ClearFastStop and
SetFeedOvrd routines, which are handled at FIB interrupt time,
a call to one of the supervision subroutines initiates a data
transfer between the computer and the MCP. Each supervision
subroutine uses the mcp_call function:

mcp_call (mcp_cmd, out_data_type, out_data, in_data_type,
in_data);

The first value in the mcp_call argument list is a short
integer, mcp_cmd, which tells the MCP which supervisory
routine is being initiated. The second value is a short
integer, out_data_type, that tells the MCP what type of data
is going to be sent (short or long integer, or NULL) . The
third value, out_data, is the data to be sent to the MCP. The
fourth value is a short integer, in_data_type, that defines

www.manaraa.com

63
what type of data will be returned from the MCP (short or long
integer, or NULL). The fifth value, in_data, is the data that
is returned from the MCP.

The function mcp_call first issues an interrupt to the
MCP using the interrupt_mcp function. The MCP acknowledges the
interrupt by setting the TRANSMIT READY bit high. The command
code, mcp_cmd, is then written to the MCP, and a switch
statement is used to decide what kind of data needs to be
written to or read from the MCP.

Since data transfer takes place one byte at a time, it is
instructive to describe the sequence by which one byte is
transferred from the supervisory computer to the MCP in the
write_to_mcp and read_from_mcp functions:

1. Wait for a TRANSMIT READY signal from the MCP.
2. Write the byte on port 0, or read the byte on port 3.
3. Set the ACKNOWLEDGE bit on port 1.
4. Wait for a TRANSMIT STOP signal from the MCP.
5. Clear the ACKNOWLEDGE bit on port 1.

This sequence is repeated twice for single word (short
integer), and four times for a long integer transfer.

Communication on the MCP side is handled in switch
statements in the iface_main function of iface.c. Based on the
command word, and the input and output data types, the MCP
knows which command it has to execute, and whether there is
data to be read from or written to the supervisory computer.

www.manaraa.com

Integration of the Supervision System
64

The interface has been designed so that additions and
modifications to the supervision subroutines can be made
relatively easily as the need for new functions is identified.
For the present system, however, a discrete set of control
options has been provided. Table 4.2 presents a list of the
basic machine monitoring and control parameters that are
needed by the supervision system. It can be seen that only a
few critical control functions are necessary to provide the
system the means for managing the machine tool.

Table 4.2. Machine Control Parameters Needed by the
Supervision System

CONTROL
PARAMETER

INPUT OR OUTPUT SUPERVISION
SCHEME

Fast stop Output All
Feed Rate

Percent Override
Input / Output A/C, Chatter

Spindle Speed Input / Output Chatter, Torque

The supervision subroutines created as part of the
present research provide an elegant means for the system to
communicate with the machine tool controller. Before the
supervision system interface was created, control of such
values as the spindle speed and the feedrate override was
accomplished by testing signals in the controller, and
splicing wires to the appropriate circuits. Integration of the

www.manaraa.com

65
separate schemes into a comprehensive system has meant, in
part, replacing the reading and writing of voltages through
data acquisition boards with calls to subroutines that command
or retrieve the required data. Considering the needs of each
scheme, the subroutines listed in Table 4.3 have been created.

Table 4.3. List of the Supervision Subroutines.

SUBROUTINE
1. Dt2817Init ();
2. FastStop ();
3. ClearFastStop ();
4. ExtFeedhold () ;
5. SetFeedOvrd (int pfp);
6. GetFeedrate (long *fr) ;
7. GetManFeedOvrd (int *mfp);
8. SetSpindleSpeed (int ns);
9. GetSpindleSpeed (int *rpm);

FUNCTION
Initialize I/O board
Request fast stop
Clear fast stop
Request external feed hold
Set feedrate override
Get programmed feedrate
Get manual feed override
Set the CNC spindle speed
Get the CNC spindle speed

The Dt2817Init routine must be called at the start of a
supervision program to initialize the DT-2817 digital I/O
board. The FastStop and ClearFastStop routines are discussed
below. The ExtFeedhold routine toggles an external feedhold on
the MCP. This kind of feedhold can be cleared by the machine
operator, and is useful for suspending machining in a non
emergency situation.

The SetFeedOvrd routine allows the programmed feedrate
override to be changed up to 200 percent from the supervisory
computer. The argument is a short integer representing the
feed override as a percentage. This subroutine does not
initiate a data transfer to the MCP, but sets the programmed

www.manaraa.com

66
override at the time of the FIB interrupt. The feedrate
override is then maintained as part of the stop.c program that
is running in OEM_SYNC. Also, completion of the command is not
acknowledged, but rather the FIB interrupt bit is held high in
the supervisory computer for approximately 0.005 seconds and
then cleared. The subroutine was implemented in this way
because the Adaptive Control scheme required a fast real time
response to feedrate override commands for stability of the
control loop. This is further discussed ,in Chapter 6.

The GetFeedrate routine returns the current feedrate from
the MCP as a long integer in the units of inches per minute.
The GetManFeedOvrd routine returns the manual feed override
setting from the operator console as a short integer with the
units of percent. In order to know the net commanded feedrate,
both the manual and programmed override percentages must be
applied to the current feedrate returned by GetFeedrate.

The SetSpindleSpeed routine allows the spindle speed to
by changed from the supervisory computer. The argument is a
short integer representing the new speed in RPM. The
GetSpindleSpeed routine returns the current net commanded
spindle speed, including the manual percent override, as a
short integer with units of RPM.

The FastStop routine, described in Chapter 3, is used by
all the supervision schemes, but is most critical in the
Adaptive Control scheme when the tool impacts the workpiece
and in the Chatter Regulation scheme when the machine tool is

www.manaraa.com

67
a severe state of chatter. The fast stopping routine can stop
both the X and Y axes is as short a time as 0.035 seconds at
a feedrate of 50 in/min. It will be shown in Chapter 6 that
the stopping time increases with the feedrate.

At the time of the fast stop, an internal feedhold
command is issued to the MCP. This stops interpolation. Then
the output from the CNC to the servos is severed. These steps
take place at the time of the FIB interrupt. A one percent
feedrate override is commanded, and the fast stop is held
active, in stop.c (0EM_SYNC) until the ClearFastStop
subroutine is called. At clear time, the axes are moved slowly
to eliminate the remaining CNC positional error by writing
voltages directly to the servos. This means that some residual
motion will always be completed before the internal feedhold
is cleared. Releasing the internal feedhold enables the
commanded axis motion to resume. The completion of both the
FastStop and ClearFastStop subroutines is acknowledged by the
MCP in a function that sets the TRANSMIT READY bit, waits for
the ACKNOWLEDGE bit and then clears the TRANSMIT READY bit.

Figure 4.3 shows a schematic of the overall supervision
system. The flow of control data between the supervisory
computer and the machine tool is indicated by the arrows
connecting the elements of the system. It can be seen that the
supervision subroutines comprise the heart of the system.

Table 4.4 lists which subroutines are needed by each
monitoring and control scheme. It can be seen that the

www.manaraa.com

SC
HE
ME

#1

S U P E R V I S O R Y COM PUTER

FLEXMATE
MCPIOQ

SCHEME #2 SCHEME #3

PARALLEL PORT

MACHINE TOOL

LOW LEVEL
NTERFACE HANDLER

SUPERVISION
SUBROUT INES

OEM_MAIN/OEM_SYMC
EVENT AREAS IN MCP

Figure 4.3. Schematic of the Supervision System and the
FlexMate Motion Co-Processor.

SC
HE
ME

#4

www.manaraa.com

69
Adaptive Control and Chatter Regulation schemes make the most
extensive use of the interface. The Broken Tool Detection
scheme and the Spindle Torque Overload scheme both need only
the fast stopping routine.

Table 4.4. List of the Supervision Subroutines Used by
Each Scheme of the Supervision System.

SUPERVISION SCHEME SUBROUTINES USED
Adaptive Control 1, 2, 3, 5
Chatter Regulation 1, 2, 3, 5, 8

Broken Tool 1, 2, 3
Torque Overload 1, 2, 3

For the present research, each monitoring and control
scheme in the supervision system will be exercised one at a
time. The use of parallel or distributed processing strategies
to run the schemes concurrently is presently being studied in
the Machine Tool Laboratory.

Each scheme essentially consists of a computer program,
and the necessary sensor and data acquisition hardware. The
supervision subroutines are compiled into a library, and the
routines are available to all of the schemes. Integration of
the schemes into a comprehensive system has consisted mostly
of three steps. First, the supervision programs were either✓
modified or rewritten so that they could be linked to the
library of supervision subroutines. It should be noted here
that the supervision subroutines were written in Quick-C, and

www.manaraa.com

that programs written in either Quick-C or Quick-Basic require
no modification to make use of the routines. Second, the
input/output routines that provided access to the machine
tool, which were usually implemented by reading and writing
voltages using a data acquisition board, were replaced by
calls to the appropriate supervision subroutine. Third, the
schemes were recalibrated to make use of the new sensors,
consisting essentially of the inductance probes and the
spindle encoder, used for the supervision system.

In the next chapter, an off-line system for the
characterization and evaluation of machine tools will be
presented. This system, created as part of the present
research, was used extensively in the development and testing
of the on-line system. The implementation of the on-line
supervision schemes is described in Chapter 6.

www.manaraa.com

CHAPTER 5
THE OFF-LINE MACHINE EVALUATION SYSTEM

This chapter describes an off-line machine evaluation
system. It consists of a portable computer, a data acquisition
board, sensors, signal conditioning hardware and the system
software PCDATA. The purpose of the system is to allow
identification of the dynamics of production machinery, as
well as the monitoring of transducer signals. The off-line
system was used to develop, modify, and test the monitoring
and control schemes used in the on-line machine supervision
system.

Hardware Requirements

PCDATA is a program, written in Quick-Basic, that
consists of several modules. A listing of the program is
presented in Appendix C, and the program is discussed in
detail in the report by Wells (1991b). The Data Acquisition
Module allows sampled data to be plotted on the screen and
saved to disk. A Fast Fourier Transform (FFT) can be performed
on the data and the spectrum can be plotted on the screen. The
System Test Module can be used to both read and write single
voltages, and is handy for monitoring transducer signals.

71

www.manaraa.com

72
There is also a Data Processing Module that can be used to
plot and FFT data that has been previously stored on disk.
This allows data to be saved and evaluated at a later time.
The Data Acquisition Module, Transfer Function Module and
Chatter Analysis Module will be described in the following
sections.

Figure 5.1 shows a diagram of the system hardware. Any
kind of voltage signal can be sampled by the Data Acquisition
Module of PCDATA. For the Transfer Function Module, it is
expected that an impact hammer will be used for the input, and
either an accelerometer or a displacement transducer will be
used for the response. Input to the Chatter Analysis Module of
PCDATA is expected to be a microphone, which must be amplified
to an appropriate voltage range. Two of the data acquisition
channels have phase matched 12 kHz passive low pass filters to
eliminate signal aliasing. The system was installed on a
portable 80386 33 MHz machine with an 80387 math co-processor.

Data acquisition is accomplished using a Data Translation
DT-2818 A/D-D/A board (Data Translation, 1988). It provides
four single ended A/D input channels, which are simultaneously
sampled and held. This means that the inputs on all the
channels are sampled at the same instant, and there is no
phase lag between input and response measurements.

The DT-2818 also has two D/A output channels and two
eight bit DIO channels. It has a maximum theoretical A/D data
throughput in the Direct Memory Access mode of 27.5 kHz. In

www.manaraa.com

73
ACCELEROMETER
CAP PROBE

HAMMER

MICROPHONE

CHARGE
A M P

CHARGE
A M P

A/ O
D/A

AMPLIFIER

FILTERS
PORTABLE
COMPUTER

Figure 5.1. Hardware Diagram of the Off-Line Machine
Evaluation System.

practice, a maximum sampling rate of 25 kHz can be achieved.
The board has been jumpered to have an A/D input range of +/-
10 volts and a D/A output range of +/- 10 volts. The DT-2818
has 12 bit digital resolution, which gives it a resolution of
20 volts / 4096 = .00488 volts.

The machine evaluation software uses the Direct Memory
Access (DMA) mode of data acquisition, which is activated by
programming the Intel 8237 DMA controller chip that is on the
mother board of all IBM PC/AT and compatible computers. The
advantage of the DMA mode is that the maximum rate of data
transfer can be achieved, since the DMA controller sends the
data as bytes directly to memory (without the intervention of

www.manaraa.com

74
the particular computer's microprocessor and therefore without
the processing speed of the microprocessor being a factor).

Data can be written to or read from memory under DMA
control using two different modes. The "single byte" mode
transfers only the specified number of data conversions to
memory. The "autoinitialize" mode will continue transferring
data, overlapping the earliest data in memory in a circular
buffer fashion, until a stop command is issued. The number of
data conversions is written to the byte count register of the
DMA chip, and defines the size of the DMA data buffer within
the memory page. For example, 25000 data conversions would
allocate 50000 bytes of memory as the DMA buffer, since each
discrete integer datum generated by the DT-2818 (0 to 4096)
occupies two bytes.

Using the DMA chip also requires programming
corresponding features on the DT-2818 board. The non-
continuous block read mode performs a specified number of data
conversions. This mode is used in the Data Acquisition Module.
The continuous block read mode performs data conversions
continually until a stop command is issued to the DT-2818.
This mode is used in the Transfer Function Module because of
the software pre-triggering it allows.

An issue in DMA data transfer is the location in the
computer's memory where the data will be stored. Memory is
structured into 64K (65536) byte blocks referred to as DMA
pages, with page 0 being the lowest. The DMA page must be

www.manaraa.com

75
specified in software when programming the DMA controller
chip, and must not conflict with DOS and other resident system
programs. Also, the amount of data stored, which may be less
than 64K bytes, must not be greater than 64K bytes and must
not cross a DMA page boundary.

Data Acquisition

The Data Acquisition Module of PCDATA allows up to four
channels to be sampled for data acquisition. The first channel
sampled will always be channel 0. The user then enters the
calibration numbers for the transducers that are connected to
the selected channels. These scaling factors allow the data to
be expressed in engineering units. He then selects the number
of samples per channel. The maximum total number of samples
has been defined to be 25000. If four channels were being
read, the maximum number of samples per channel would be 6250.

The fastest attainable DMA sampling rate for one channel
using the DT-2818 board is 25000 Hz. The simultaneous sampling
of the DT-2818 board requires that the total sampling rate be
divided by the number of channels being used, so the maximum
possible sampling rate on four channels would be 6250 Hz. By
changing the samples per channel, and the sampling frequency,
the user can control the total observation time.

After the data has been acquired, it must be extracted
from the memory page where the DMA chip has placed it. A PEEK

www.manaraa.com

76
loop is used to extract the low and high bytes of the data
from memory. The integer data values are converted into scaled
real values, and then assigned to their respective data arrays
using modulo division to increment the channel numbers.

When it has been recovered, the time domain data for each
channel can be plotted, or an FFT of up to 8192 points can be
calculated from the data (using a C language linked
subroutine, translated from Press et al., 1986, which employs
the Cooley-Tukey algorithm) . The size of the FFT can be
defined through the program's Setup Module. If fewer data
points have been taken for each channel than the selected FFT
size, then an FFT cannot be computed. If more data points have
been taken, then the user can select a time window from the
full data record for the transform. The time data and spectrum
for each channel are then plotted. The features available for
plotting are described in a help line that appears at the
bottom of the graphics screen. The program also supports a
screen dump of the plots in either a dot matrix or laser
printer format.

A principal value of the PCDATA program is that the time
domain data can be saved to disk for later processing. Using
a binary file format, the entire time record for each channel
is saved. The binary file approach is used to minimize both
disk access time and the size of the data files. Binary data
retrieved by the Data Processing Module can in turn be saved
in ASCII format for processing by other software.

www.manaraa.com

77
An important consideration in data acquisition is signal

aliasing. This phenomenon can occur when the data contains a
frequency component that is either above the sampling
frequency of the data acquisition system, or is between the
sampling frequency and the maximum frequency that can be seen
in the FFT spectrum. Dynamic analyzers, such as the GenRad
2515 computer test system (GenRad, 1985), include anti
aliasing low pass filters that remove alias frequencies from
the sampled data.

As an example of signal aliasing, Figure 5.2 shows a plot
of a 100 Hz signal, and its spectrum, sampled by the Data
Acquisition Module of PCDATA at a rate of 5000 Hz. Another
frequency of 8000 Hz, 3000 Hz above the sampling frequency,
was added to the signal using a second function generator. It
can be seen that the higher frequency has aliased into the
spectrum at 2000 Hz.

Since it is not usual to know beforehand the frequency
content of a time domain signal, the alias frequency could be
mistaken as a real characteristic of the system being
measured. Figure 5.3 shows a plot of the same signal taken
through a Wavetek model 432 low pass filter with its cutoff
frequency set at 5000 Hz. It can be seen that the spectral
line at 2000 Hz has now been almost fully attenuated.

Figures 5.2 and 5.3, which demonstrate the data taking
capability of PCDATA, show that it is essential to properly
condition signals before sampling them. The off-line machine

www.manaraa.com

78
VOLTS CHANNEL B

1.00

0.50
0.00

-0.50
- 1.00 0.00 0.02 0.04 0.05 0.08 0.10

0.25
0.18
0.12
0.05
0.00 0 500 1000 1500 2000 2500FREQ (Hz)F1=LINIIS F2-LABEL F3=REPL0T F4=SINGLE F5=CURS0R F6=HATH F7=PRINT ESC=CONTINUE

Figure 5.2. Time Data and Spectrum Plots of an Unfiltered
100 Hz Signal with Aliasing.

1.00
0.50
0.00

-0.50
-1.00 0.00 0.02 0.04 0.05 0.08 0.10

0.24
0.18
0.12
0.05
0.00 0 500 10B0 15B0 2000 2500FREQ (Hz)F1=LINIIS F2-LABEL F3-REPL0T F4=SINGLE FS=CURS0R F6=HATH F7=PRINT ESC=CONTINUE

Figure 5.3. Time Data and Spectrum Plots of a Filtered
100 Hz signal with Aliasing.

TINE (eec)VOLTS CHANNEL 0-SPECIRUH
100 Hz : : i

j | j

i i i
; ALIAS

; . . ;1

VOLTS CHANNEL 0

TINE (sec)VOLTS CHANNEL 0-SPECIRUH
100 Hz j | |

j ! |
| | ALIAS

! ! _

www.manaraa.com

79
evaluation system includes two phase matched passive low pass
filters with cutoff frequencies of 12 kHz. This cutoff
frequency was selected because high frequency signals are
rejected, and because frequencies up to 12.5 kHz can be seen
in the spectrum if one channel is sampled at 25 kHz using the
Data Acquisition Module.

Experimental Modal Analysis

The Transfer Function Module of PCDATA offers
capabilities similar to some of those provided by the GenRad
2515 computer test system (GenRad, 1985) for measuring
Transfer Functions. The user begins by selecting a sampling
frequency for the Transfer Function (TF) channels. He can
select up to 12000 Hz, or choose a lower sampling rate. The
latter choice may be sometimes useful in order to obtain a
finer frequency resolution in the spectrum, since

df = sfreq / n (5.1)

where df is the frequency resolution, sfreq is the sampling
frequency and n is the number of samples taken.

The excitation signal for the TF, which will always be an
impact hammer, must be on channel 0 of the DT-2818 board. This
is because only channel 0 is monitored for the trigger. The

www.manaraa.com

80
response, which will always be channel 1, is usually measured
either as displacement or acceleration.

The trigger threshold is a value, in volts, above the DC
offset of the hammer charge amplifier. It has been found that
0.2 volts works well for most situations. For lighter hits,
the gain on the hammer charge amplifier can be increased. In
order to determine a threshold for the hammer, the Data
Acquisition Module can be used to plot several test hammer
hits so that the hammer voltage can be evaluated. The
threshold value is referred to the DC offset of the hammer
charge amplifier by summing it with the voltage being output
on channel 0. This value is in turn used to define a discrete
limit value, whose range is from 0 to 4096, that is computed
each time the program waits for a hammer hit.

In order to produce a reliable TF, it is necessary to
average some number of hits. It has been found that 3 to 5
averages are sufficient for accurate results. After the data
acquisition process has been begun, the message "Waiting for
trigger # 1 (Esc to Exit) ..." appears in the center of the
screen, and the command to read A/D with continuous DMA is
issued to the DT-2818. In the background, the data transfer is
begun. The DMA buffer size for the Transfer Function Module
has been set to 32 000 values (16000 values for each channel)
which makes the buffer 64000 bytes long in memory. The data
from channel 0 and channel 1 are streamed continually into a
circular memory buffer defined for the DMA chip.

www.manaraa.com

81
The PEEK statement is used to extract values from the

memory locations corresponding to data from channel 0. If the
value returned exceeds the threshold limit value, then a
hammer hit is detected. This software triggering makes the
program dependent on the speed of the computer used for the
off-line system, but provides the pre-triggering necessary to
capture the entire hammer impulse. Once the trigger has been
found, the program polls the DMA address register and stops
the DMA process when the number of data points required for
the FFT have been taken. The hit is pre-triggered by taking a
point three data values prior to the sensed trigger as the
actual start of the data window.

After the trigger has been detected, the message
"Processing (ESC to Hold) ..." appears on the screen. The data
that has been stored in memory by the DMA transfer is now
extracted, scaled, and assigned to the appropriate channel
data arrays. A square window, 120 data values long, is applied
to the hammer signal in order to remove noise from the hammer
spectrum. It was found that 120 data values are sufficient to
detect double hammer hits. If the data wraps around the DMA
page boundary then two loops are used to extract the data. The
comments in the code listing of PCDATA in Appendix C explain
the details of the data extraction algorithms.

Next, the data from both channels are averaged, and the
average is subtracted, datum by datum, while an exponential
window is applied to the data. Subtracting the average gives

www.manaraa.com

82
the effect of removing the DC offset from the data, and the
exponential window greatly improves the quality of the signals
by attenuating noise that continues in the transducer signals
after the transient from the impact has died out. These two
steps are represented by the following expression

DATA(J) = (DATA(J) - AVG) * EXP(-J * DT / TAU) (5.2)

where DATA() is the data array, J is a loop counter, AVG is
the average value of the data, DT is the time step of the data
sampling, and TAU is the time constant for the exponential
window. A value for TAU of one tenth of the total observation
time was found sufficient to attenuate noise while not
corrupting the impact signal.

If a voltage overload is detected on either channel then
the warning "OVERLOAD! Continue or Hold? [C/*H]" is printed on
the screen. Pressing RETURN or H will cancel the hit, and the
program will return to waiting for a trigger. Pressing C
allows the user to take the hit in spite of the overload.

The real and imaginary values of the average TF are
computed using the Cross and Auto Spectrum (GenRad, 1985). The
Auto Spectrum calculates the average of the squared magnitude
of the hammer spectrum, representing the mean power of the
impact at each frequency. The Cross Spectrum calculates the
averaged complex product of the hammer spectrum and the
response spectrum. It indicates which frequencies match

www.manaraa.com

83
between the two spectra. The Transfer Function is then
calculated as the ratio of the cross spectrum of the impact
and response to the input power spectrum of the hammer hit.
Writing the above relationships mathematically gives the
following expressions

Auto Spectrum Gaa = Sa . Sa* (5.3)
Cross Spectrum Gab = Sb . Sa* (5.4)
Transfer Function Hab = Gab / Gaa (5.5)

where S = REAL + j * IMAG is an operator representing the real
and imaginary parts of a signal, (a) represents the hammer,
(b) represents the response and (*) indicates the complex
conjugate. Expanding the above expressions for the real and
imaginary parts of the Transfer Function gives

Re[Hab] = (Re[a] * Re[b] + Im[a] * Im[b]) / Mag[a]2 (5.6)
Im[Hab] = (Re[a] * Im[b] - Im[a] * Re[b]) / Mag[a]2 (5.7)

The user is presented with plots that show the spectrum
of the hammer hit and the current average imaginary Transfer
Function. The prompt "Continue, Hold, Stop or Average?
[*C/H/S/A]" is printed at the top of the graphics screen.
Based on what he sees in the spectrum, the user can continue
with the next hit, reject the hit and try again (Hold), stop
taking the Transfer Function and return to the module input

www.manaraa.com

84
screen, or .force the average TF to be computed based on the
number of hits completed. If hold is selected, the present TF
is subtracted from the average TF before the program branches
back to wait for the trigger again. When all the hits have
been completed, or Average has been selected, the real and
imaginary plots of the average TF are displayed.

If an accelerometer has been used for the response
transducer, the TF can be converted from acceleration to
displacement by dividing by -w2 across the frequency range.
This option is supported under the F6=MATH option on the plot
screen, as well as the ability to change the scale factors for
both the Y and X axis data values.

To verify that the Transfer Function Module of PCDATA
gives accurate results, a number of measurements were carried
out using the GenRad computer test system as a benchmark.
Figure 5.4 shows a GenRad plot of a Transfer Function taken on
a 4 fluted 0.75 inch diameter HSS endmill on the Omnimil using
a medium hammer and a small accelerometer. Figure 5.5 shows a
plot of the same measurement taken by the Transfer Function
Module of PCDATA. It can be seen that the Transfer Functions
agree well to about 3600 Hz, beyond which frequency the energy
from the hammer was insufficient to excite the system (the
sampling rate of the DT-2818 board is not fast enough to
measure hits with a smaller hammer). Similar correlation was
found between GenRad and PCDATA in the many test measurements
that were performed during the development of the program.

www.manaraa.com

ACCELEROMETER 'IMPACT HAMMER

ACCELEROMETER'IHFfiCT HAMMER

FRECKHZ > : 0.0 R f a i _ ; 0.08S90e

LIN

0.0 LIN

LJN

LIN

Figure 5.4. Plot of a Transfer Function Measured using
GenRad.

M/S*2 / NEHTOH REAL IF
40
20
0

-20
-40

1X-/1X+
40
20
0

-20
-40

H^S*2 / NEHTON
500B400010000 FREQ (Hz) INAG TF

4000300010000 FREQ (Hz)
Figure 5.5. Plot of a Transfer Function Measured using

the PCDATA Transfer Function Module.

www.manaraa.com

86
It can be seen that many aspects of the milling process

can be measured with the features available in the Data
Acquisition Module and the Transfer Function Module of PCDATA.
The output of various transducers can be sampled, and Transfer
Functions can be taken to identify the structural dynamics of
the machine and its various tools. In the next section a
specialized module of PCDATA is presented that can be used by
the machine operator to analyze chatter.

Chatter Detection and Analysis

Using the Transfer Function Module of PCDATA, the TF
between the tool and the workpiece of a machine tool can be
measured. The TF will show the modes in which the tool/spindle
system will vibrate. Tlusty (1985) described how the chatter
frequency will be near the frequency of one of these modes.
The mechanism which causes chatter was described briefly in
Chapter 1, and is depicted in Figure 1.3.

Smith (1987) demonstrated that adjusting the spindle
speed such that the fundamental tooth frequency is made equal
to an integer division of the chatter frequency disrupts the
regeneration of waviness that is responsible for chatter. This
technique directs the spindle speed into one of the pockets of
stability shown in the lobing diagram of Figure 1.5.b.

The Chatter Analysis Module of PCDATA identifies the
frequency of machine tool chatter. This information can be

www.manaraa.com

87
used to calculate a stable spindle speed at which to continue
the cutting process. The operator enters the number of teeth
on the cutter, the actual spindle speed used for the data
sample, and a threshold for chatter detection. He then takes
a sound data sample of the unstable cut using the microphone.
The module computes and plots the frequency spectrum of the
data, and identifies the tooth frequency based on the spindle
speed and the number of teeth. The peaks belonging to the
tooth frequency and the chatter frequency are identified on
the plot.

Figure 5.6 shows the time data and spectrum of an
unstable machining pass made on the Omnimil cutting aluminum.
The plot is from the Data Acquisition Module of PCDATA. The
tool is the same 4 fluted 0.75 inch diameter HSS endmill for
which the Transfer Function was presented in Figures 5.4 and
5.5. The feed for the cut was 70 inches per minute, the actual
spindle speed, as measured by a photo tachometer, was 2948 RPM
and the axial depth of cut was 0.400 inches.

Figure 5.7 shows a plot of the spectrum of the same
unstable cut as presented by the Chatter Analysis Module. The
chatter peak that is identified at 3 623 Hz corresponds to the
3600 Hz mode seen in the TF in Figure 5.5. The program has
calculated the tooth frequency, Ft, and has identified the
chatter frequency, Fc, by locating in the spectrum the largest
spectral line that is not a multiple or divisor of the tooth

www.manaraa.com

88
MICROPHONE (volts) CHANNEL 0

0.00 0.08 0.16 0.25 0.33 B.41
TINE (sec)

CHANNEL 0-SPECTRUN
\ i

I i
I1

J .. oillJJMiJlii -1 -■■■ -I ■ 1 '■ ■■■■ ■ Lriilll.l m„ I
0 1000 2000 3800 4000 5000

FREQ (Hz)

Figure 5.6. Time Domain Data and Spectrum of an Unstable
Machining Cut.

N = 4 SPEED = 2340 Ft =197 Fc = 3623
0.41

0.31

0.21

0.10

0 ■(il LnlliljmliijJlli tLuuliaLui.Jj ill
1001 Z001 3000

FREQ (Hz)
4000 5000

Figure 5.7. Output of the Chatter Analysis Module of
PCDATA Showing the Tooth Frequency and
Chatter Frequency of an Unstable Cut.

www.manaraa.com

89
frequency. With this information, a new cutting speed can been
calculated from the following expression (Smith, 1987; Delio,
1989)

S = (Fc * 60) / (m * (N + 1)) (5.8)

where S is the new spindle speed in RPM, Fc is the chatter
frequency in Hz, m is the number of teeth on the tool and N is
an integer number representing the number of waves on the
machined surface between consecutive cutter teeth.

Since regions of stability repeat in integer multiples,
N can be selected to adjust the new speed to a range
appropriate for a given machine tool. However, regions of
stability become less well separated at lower spindle speeds
(see Figure 1.5.b). This means that the ability to direct the
speed into a pocket of stability is governed to some degree by
the spindle speed range of a particular machine tool. Also,
because chatter can occur in more than one mode, it is
possible that more than one iteration of the test may be
needed before an absolutely stable speed can be selected.

For the Chatter Analysis Module to operate effectively,
it is important that the spindle speed of the machine tool be
accurately known. A small error in the spindle speed will be
multiplied as the chatter detection algorithm searches across
the frequency range for peaks that are not multiples of the
fundamental frequency. An 8192 point FFT is used in the

www.manaraa.com

module, with a sampling rate of 16384 Hz. This gives a
frequency resolution of 2 Hz. As each peak in the spectrum is
evaluated, a range of +/- 3 spectral lines (12 Hz) is tested.
This helps keep an error in the spindle speed from causing a
false identification of chatter, but also limits the module's
ability to resolve chatter when the harmonics of the spindle
runout are separated by less than 12 Hz.

In the next chapter, results of a variety of machining
tests on the Omnimil are presented that evaluate the
supervision subroutines and verify the performance of the on
line supervision system. The off-line system was used for all
the data acquisition and Transfer Function measurements
required during the tests.

www.manaraa.com

CHAPTER 6
EXPERIMENTAL VERIFICATION OF THE ON-LINE SYSTEM

In this chapter the performance of the supervision
subroutines will be quantified, and the monitoring and control
schemes that comprise the on-line supervision system will be
demonstrated. The program PCDATA, described in the previous
chapter, was used for data acquisition and the measurement of
Transfer Functions.

The Fast Stooping Routine

Since each of the monitoring and control schemes makes
use of the fast stopping routine, this function was evaluated
first. There are three principal constraints on the operation
of the fast stop. First, the time required for the axes to
stop moving is directly related to the feedrate. This is to be
expected due to the inertia of the drives. Second, the axes
must be moved slowly to eliminate the following error that
remains after the stop. This is presently accomplished at the
time when the fast stop is cleared. Third, the size of the
following error remaining after the fast stop is also related
to the axis feedrate. Depending on when the fast stop occurs
in relation to the last increment from the interpolator, the

91

www.manaraa.com

92
value of the CNC following error can jump by over 200 percent,
and the MCP will shut down the Omnimil if the following error
exceeds 0.500 inches. This was observed when the fast stop was
applied at feedrates faster than 250 in/min.

Figure 6.1 shows a plot of the Y axis tachometer voltage
during the execution of a conventional feedhold commanded
through the ExtFeedhold subroutine. The Data Acquisition
Module of PCDATA was triggered when the FIB interrupt line
went high. The axis was moving in the negative direction at 50
in/min. It takes about 0.100 seconds for the servo to begin
deceleration, and about 0.224 seconds for the axis motion to
stop completely. Figure 6.2 shows the results of a fast stop
commanded to the Y axis drive at the same feedrate. Again, the
data acquisition was triggered at the time of the FIB
interrupt. It can be seen that be seen that commanding zero
velocity to the servo brings the drive to a stop in
approximately 0.035 seconds.

Table 6.1 presents a list of the times required to
complete a fast stop, and a feedhold, at several different
feedrates. As expected, the fast stop out-per forms the
feedhold dramatically, but the results also show that the fast
stopping time does get longer as the feedrate increases. The
values of the CNC following error remaining at the time of the
fast stop are also listed in the table. As mentioned above,
these values vary depending on when the fast stop occurred in
relation to the last increment output by the interpolator.

www.manaraa.com

93
V AXIS IACH — EXTERNAL FEEDHOLD

0.92

L 0.40

0.15

- 0.11
0.30 0.400.10 0.20

TIME (sec)

Figure 6.1. Output of the Y Axis Tach During a Feedhold.

V AXIS TACH — FAST STOP
0.92

0.66

U0
L 0.40
I
S

0.14

- 0.12

\

0.00 0.10 0.20 0.30
TINE (sec)

0.40 0.50

Figure 6.2. Output of the Y Axis Tach During a Fast Stop.

www.manaraa.com

94
Table 6.1. Response Times for the Fast Stopping Routine

and a Conventional Feedhold.

FEEDRATE
(in/min)

FEED HOLD
TIME
(sec)

FAST STOP
TIME
(sec)

FOLLOWING
ERROR
(in)

25 0.137 0.032 0.018
50 0.224 0.035 0.036
75 0.308 0.050 0.054
100 0.384 0.052 0.072
125 0.465 0.063 0.089
150 0.547 0.063 0.107
175 0.639 0.072 0.125
200 0.733 0.077 0.142
225 0.794 0.077 0.163
250 0.886 0.078 0.184

Figure 6.3 shows a plot of the following error voltage,
Ep, during a sequence when a fast stop was commanded to the Y
axis drive, and then cleared about one second later. The
feedrate was 50 in/min. Point A on the plot shows when the
fast stop was executed. The Ep voltage was set to zero at the
instant the servo was disconnected from the CNC. The fast stop
was cleared at point B. The small voltage between B and C
moves the servo to eliminate the CNC following error. At point
C the axis is within the +/- 0.001 inch in-position zone
established in stop.c, and the servo loop is reconnected. The
positional loop brings the servo exactly into position, and
the commanded motion is fully resumed at point D.

www.manaraa.com

95
UOLTAGE TO ¥ AXIS SEHUO ~ FAST_SIOP / CLEAB_FAST_SIOP

2.00

1.50

U 1.B0

S 0.50

00

-0.50 3.00 3.50 4.00 4.50 5.00 6.002.00 2.50
TINE (sec)

Figure 6.3. Voltage Output to the Y Axis Servo During a
FastStop / ClearFastStop Sequence.

The plot shows that when the servo is reconnected to the
CNC at point C there is a small instantaneous error generated
in the opposite direction. This is due to the 0.001 inch error
remaining at reconnect time. Since the axis information
available to stop.c is only updated every SYNC pass, it is not
possible to exactly eliminate the CNC error. If the in
position zone were too small then the voltage moving the
servos would move them across the zone before the code in
stop.c could be executed again. On the other hand, if the
voltage driving the servos is too small then there would be an
unreasonable delay in eliminating the error. The voltage sent
to the servos to eliminate the CNC error is equivalent to a
feedrate of about 5 in/min.

www.manaraa.com

The Supervision Subroutines
96

The present set of supervision subroutines, with the
exception of the fast stopping routine and the routine to
change the feedrate override, all initiate a data transfer to
the MCP. A consideration that needs to be studied, therefore,
is how much time is taken up by the communication protocol
before the supervisory computer can resume a given monitoring
or control algorithm. In Chapter- 4 it was seen that the
ACKNOWLEDGE bit is set and cleared by the supervisory computer
for each byte of data transferred. It is possible, therefore,
to monitor the activity of this bit as a measure of the time
required to issue a given command to the MCP.

Figure 6.4 shows plots of the ACKNOWLEDGE bit activity
during the execution of several of the supervision
subroutines. The logic voltages were measured at the IOQ board
in the MCP card cage, and in each case the data acquisition
was triggered on the FIB interrupt. Several interesting
features can be seen in the plots.

Figure 6.4.a shows the ACKNOWLEDGE bit activity for an
ExtFeedhold. This subroutine writes a total of 6 bytes to the
MCP: a short integer representing the command word; a short
integer representing the type of input data (NULL); a short
integer representing the type of output data (NULL) . It can be
seen in the plot that there are 6 logic transitions of the

www.manaraa.com

97
ACKNOWLEDGE bit. The time required for a one byte transfer is
approximately 0.002 seconds.

Considering all the plots, it is evident that there is
some variability in the amount of time it takes the MCP to
begin the data transfer. This is because the interface is
running in OEM_MAIN. If the task scheduler in the MCP has
tasks of a higher priority than MAIN to be executed, then they
will be completed first. This is evident in Figure 6.4.b,
which shows the activity for the GetFeedrate subroutine. This
routine returns a long integer representing the current
feedrate from the MCP. A delay of about 0.038 seconds can be
seen at the start of the transfer. It can also be seen that
some of the ACKNOWLEDGE bit transitions take longer than
others. This is also due to the task scheduling in the MCP. In
general, however, it was observed during the development of
the supervision system that the subroutines completed
execution in an average time of about 0.060 seconds.

The only supervision subroutine that must be executed in
a real time control loop is the SetFeedOvrd routine. The
Adaptive Control scheme uses this subroutine to vary the
feedrate based on the sensed vibration of the cutting process.
As mentioned in Chapter 4, the subroutine was designed to
complete one feedrate override command to the MCP in 0.005
seconds. This time is short compared to the overall time step
of the adaptive loop, and will be shown in the next section
not to have affected the stability of the control scheme.

www.manaraa.com

98

ACKNOWLEDGE BIT ACTIUITT — EXT FEEDHOLD

L 2.6

0.02 0.03 8.04 0.85
TIKE (sec)

ACXMIODGE BIT ACTIUITT — (El FEED RALE
5.0

(I0
LT
S

1.4

0.2
0.100.080.02 0.06B.B4

Tins (sec)

(a) (b)

ACKNOULEDGE BIT ACTIUITT -- SET_SP1NDLE_SPEE>

3.8

U0
L 2.6 I
S

1.4

0.2
0.01 0.02 0.03 0.04 8.05

TINE (sec)

ACKNOWLEDGE BII ACTIUITT — GEt SPINDLEJSfEEB
5,0

3.8

80
L
I
S

1.3

0..000..80 0.84
TIDE (sec)

(C) (d)

Figure 6.4. Acknowledge Bit Activity During Execution of
the Supervision Subroutines,
a) ExtFeedhold; b) GetFeedrate;
c) SetSpindleSpeed; d) GetSpindleSpeed.

www.manaraa.com

99
Figure 6.5 shows a plot of the Y axis tachometer voltage

sampled during a moderate feedrate override change from 20 to
70 percent at a commanded feed of 100 in/min. The data
acquisition was triggered on the FIB interrupt. Although the
new feedrate override is set in the MCP at the time of the FIB
interrupt, it can be seen that approximately 0.35 seconds are
required to complete the feedrate change. The execution time,
of course, varies depending on the size of the change in the
feedrate, and is governed by the acceleration ramp tables in
the MCP. The maximum feedrate override that can be commanded
is 200 percent, and the smallest is 1 percent. A value of 0
percent tells the MCP to ignore the feedrate override change,
and for this reason the SetFeedOvrd subroutine cannot be used
to completely stop the motion of the drives.

Figure 6.6 shows a plot of the spindle speed during a
call to the SetSpindleSpeed subroutine. The speed was changed
from 600 RPM to 2 400 RPM. Compared to the subroutine execution
time shown in Figure 6.4.c, it can be seen that a considerable
amount of time can be required for the spindle to reach its
new speed when a large change is commanded.

The discrete nature of the signal is due to the fact that
the speed was measured by the digital tachometer used by the
Spindle Torque Overload scheme. The speed values were written
as voltages on a D/A channel of the data acquisition board in
the supervisory computer, and were sampled by the off-line
machine evaluation computer.

www.manaraa.com

100
V AXIS TACHOMETER — SET FEED OURD — 28 TO 70 IN/MIN

8.0

7.0

6.0

5.0

4.0

3.0

Z.0
0.10 0.30 0.40

TIME (sec)

Figure 6.5. Y Axis Tachometer Voltage During a Change in
Feedrate Override from 20 percent to 70 percent.

SPINDLE SPEED — SET_SPINDLE SPEED (600 RPM TO 2400 RPM)
2500

2000

P 1500

1000

500
0.00 1.00 3.001.50

TIME (sec)

Figure 6.6. Spindle Speed During a Change from 600 RPM
to 2400 RPM.

www.manaraa.com

Adaptive Control System
101

The Adaptive Control (A/C) system was outlined in Chapter
3. Figure 6.7 shows a block diagram of the system, as it was
originally implemented by Tyler (1989) using force feedback.

E f ACOM FCOM XCOM E p VCOM n d X / d t X Q ct

n o m +- a c t

SERVO LOOP

ADAPTIVE LOOP

n o m

CUTTING

P R O C E S S

Figure 6.7. Block Diagram of the Adaptive Control System
(After Tyler, 1989).

In order to integrate the A/C scheme into the supervision
system, the control software was rewritten in Quick-Basic, and
the supervision subroutine library was used in place of
reading and writing voltages using a data acquisition board.
Also, the vibration signal from the inductance probes was used
in place of the original dynamometer signal, and the spindle
encoder was used to synchronize the data sampling to the tooth
period of the cutting tool. These software and hardware
changes, which are described in the report by Wells (1991c),
have essentially produced an entirely new A/C system whose
performance is yet to be fully assessed.

www.manaraa.com

102
Figure 6.8 shows the output from the inductance probes

when the spindle is rotating at 600 rpm without cutting. The
profile in the plot is the runout of the spindle over two
revolutions. When a tool is cutting, the vibration signal is
superimposed on the runout, and the runout must be subtracted
from the vibration signal in the control software, tooth
period by tooth period, in order to have a signal that shows
only the vibration due to the cutting process. This operation
was already performed in the T-ool Breakage Detection scheme,
by averaging 10 rotations of runout data and subtracting the
average runout during the machining cuts. This method was
adapted to the A/C scheme, and the computation was found not
to significantly increase the time step in the adaptive loop.

SPINDLE RUNOUT AI 600 RPM — MEASURED BY INDUCTANCE PROBES16.B

B.0

4.0

0.0 0.05 0.10 0.15 0.20
TINE (sec)

Figure 6.8. Spindle Runout Across Two Revolutions at 600 RPM
Measured by the Inductance Probes.

www.manaraa.com

103
A new data acquisition strategy was designed to take

advantage of the increased resolution of the spindle encoder
signal. DMA data transfer was used in the autoinitialize mode
to create a circular data buffer 240 values long (see Chapter
5 for a discussion of DMA data acquisition). The buffer fills
continually with data from the inductance probes, with the
acquisition being clocked by the 240 pulse-per-revolution
signal from the encoder. When the algorithm needs to read
data, it only has to sample from the DMA buffer. The circular
buffer also makes is easy to look back one tooth period, so
that the change in vibration, from tooth period to tooth
period, can be monitored. A diagram of the circular buffer
strategy is shown in Figure 6.9.

2 3 9
PR ESEN T (
TOOTH P E P IO O

PR EV IO U S
TOOTH PERIOD

Figure 6.9. Diagram of the Circular DMA Buffer Used to Sample
the Vibration Signal for a 4 Toothed Cutter.

Since two numerical integrations must be performed in
order to obtain the feedrate command, it is essential to have
an accurate time step for the adaptive loop. The A/C program
was also modified to obtain the time step automatically, so

www.manaraa.com

104
that the scheme could be run on computers with different
processing speeds. At the start of the program the adaptive
loop is run off-line for 300 cycles, and the execution time is
measured using the timer in the computer. The net time step
for the adaptive loop on the present supervisory computer was
computed to be 0.007 seconds, which equates to 5 data samples
per tooth period at the spindle speed used in the tests.

For the cutting tests, a 0.75 inch diameter by 4.2 5 inch
long 4 fluted HSS end mill was used to cut 7075-T6 aluminum.
The spindle speed was 420 RPM, and the maximum cutting
feedrate was 13.2 in/min. This gave a feed per tooth of 0.008
inches. An 0.150 inch axial depth of cut was used for up
milling at 25 percent radial immersion. The cuts were made in
the negative Y axis direction. The feedrate in the transient
loop was four times the cutting feedrate (52.8 in/min). These
parameters are the same as those used by Tyler (1989).

Figure 6.10.a shows a plot of the Y axis tachometer
signal during a representative cut with the value of the
adaptive gain, Ka, set at 40. Since outputting the processed
inductance probe signal from the A/C program during the
adaptive loop is computationally expensive, the voltage
directly from the inductance probes, without the runout
subtracted, was sampled during the cut. The signal is shown in
Figure 6.10.b. In order to bring out features in the signal,
it was passed through a 26 Hz low pass filter to remove the
tooth frequency (28 Hz) and its higher harmonics.

www.manaraa.com

105
ADAPTIVE CONTROL — ¥ AXIS TACH — KACC = 40

7 . 0

5 . 0

4 . 0

3 . 0

2.0

1.0

0.0
- 1.0

2.0 4.0 b .0 10.00.0 TINE (sec)

(a)

ADAPTIVE CONTROL — VIBRATION SIGNAL — KACC = 40-5.90

-6.05

L-6.20

-6.35

-6.50 4.0 8.02.0 10.00.0 IIME (sec)

(b)
Figure 6.10 Demonstration of the Adaptive Control System.

a) Y Axis Tachometer Signal.
b) Vibration Signal from the Inductance Probes.

www.manaraa.com

106
When the impact of the tool and the workpiece was

detected by the scheme, point A on the plots, the fast stop
was triggered. The axis velocity dropped to zero in about
0.035 seconds. The ClearFastStop subroutine was called
immediately, and the CNC error was eliminated at point B. The
adaptive loop in the scheme then took over and proceeded with
the cut, increasing the feedrate until the nominal cutting
feedrate was reached at point C.

The test cuts of the new A/C scheme showed that the
vibration signal from the inductance probes, instead of a
force signal from a dynamometer, could be used to regulate the
cutting process if the spindle runout were subtracted for each
tooth period. It was also observed that the adaptive loop
performed well for values of Ka, from 20 to 80. However, more
tests need to be performed on the A/C system to fully explore
the vibration signal, and ways to process it to extract
information about the cutting process.

Tool Breakage Detection System

The Tool Breakage Detection system (Tarng, 1988; Vierck,
1991) is able to recognize when an insert on a face mill, or
a flute on an end mill, is broken. As part of the on-line
supervision system, the scheme is designed to call the fast
stopping subroutine when a broken tooth is detected during a
cut.

www.manaraa.com

107
Figure 6.11 shows a plot of the first difference and

average displacement values measured during a cut with an
undamaged tool. The cut was made on cast iron using an eight
toothed 4.25 inch diameter face mill on a #50 taper V-flange
tool holder (No. CV50SM200240). The inductance probes were
used to sense the vibration, and the Tool Breakage Detection
program by Vierck (1991) was used to sample and plot the data.
For Figure 6.12, another cut was made under the same
conditions with one of the inserts removed from the face mill.
This simulated tool breakage.

The entry and exit to the cuts can be clearly seen in the
plots of the average displacement. As described in Chapter 3,
the signature of tooth breakage is evident in the first
difference values of the broken cutter (Figure 6.12). The
vibration amplitudes, both positive and negative, are much
greater for the damaged cutter. This violates the upper and
lower trigger thresholds, and causes the fast stop command to
be issued to the MCP.

Since it is difficult to simulate tool breakage in the
middle of a cut, a plot of the fast stop being triggered by
the scheme has not been included. When a tool with one insert
removed enters the cut, the scheme reacts immediately. The
data would show only the runout of the tool and the brief
vibration at the moment of entry. Moreover, the data from both
machining passes clearly show that the first difference values
give an excellent indication of tool breakage.

www.manaraa.com

108
FIHST DIFFERENCE UNBROKEN CUTTER

5.0M
I Z .5
CR 0 0N -2.5

-5.0 0 20 40 60 80 100

6.0M
I 4.0CR 2.0 0N B

- 2.0 0 20 40 60 80 100CUTTER ROTATIONS
Figure 6.11. First Difference and Average Displacement

Values for an Undamaged Cutter.

5.0nI 2.5
CR B 0N -2.5

-5.0 0 20 40 60 80 100

6.0MI 4.0CR 2.0 0N B
- 2.0 0 20 40 60 80 100CUTTER ROTATIONS

Figure 6.12. First Difference and Average Displacement
Values for a Damaged Cutter.

CUTTER ROTATIONS
AVERAGE BROKEN CUTTER

FIHST DIFFERENCE BROKEN CUTTER

CUTTER ROTATIONS
AVERAGE UNBROKEN CUTTER\ j

r 1
I i

i i

; i

www.manaraa.com

109
Chatter Recognition and Control System

In order to demonstrate the Chatter Recognition and
Control scheme as part of the on-line supervision system on
the Omnimil, machining cuts were made on cast iron using an 8
toothed 4.25 inch diameter face mill on a #50 taper V-flange
long extension tool holder (No. C50-15SM600) with Silicon
Nitride inserts. The Transfer Function Module of PCDATA was
used to measure the TF of the tool. Figure 6.13 shows the
Transfer Function in the X axis direction. It can be seen that
the tool has modes of interest at 251 Hz and 327 Hz, with the
latter mode being associated with the most negative real part
of the Transfer Function.

1X+ / IX- REAL TF0.3B
0.15
0.00

-0.15
-0.30 15000 FREQ (Hz)MICRON / NEHTON I MAG TF
0.00

- 0.10
- 0.20
-0.30 327-0.40 500 1000 15000 FREQ (Hz)

Figure 6.13. Transfer Function of the Tool Used in the
Chatter Recognition and Control Tests.

www.manaraa.com

110
Using a feedrate of 80 in/min, and a commanded spindle

speed of 1450 RPM, which produced an actual speed of 1438 RPM,
several test cuts were made. The value of b,. for the tool wasl im
found to be just above 0.070 inches. For the demonstration, an
unstable axial immersion of 0.080 was chosen.

The cut was immediately very unstable, with the chatter
sound being quite pronounced. Upon detection of chatter, the
system called the FastStop subroutine. The spindle speed was
adjusted, using the SetSpindleSpeed subroutine, according to
the algorithm outlined in Chapters 3 and 5. The new commanded
speed was 2429 RPM, which produced an actual spindle speed of
2394 RPM. The feedrate was adjusted to 134.4 in/min by the
SetFeedOvrd subroutine so that a constant feed per tooth was
maintained. The fast stop was then cleared, and the programmed
motion continued. The remainder of the cut was stable.

Figure 6.14.a shows the microphone data sampled during
the unstable cut, and its spectrum. The chatter peak is
located at 308 Hz, which corresponds to the 327 Hz mode shown
in Figure 6.13. The chatter frequency appears to be lower than
the modal frequency shown in the Transfer Function because the
load on the tool due to the cutting force most likely shifted
the modal frequencies lower during the cut.

Figure 6.14.b shows the microphone data and spectrum of
the stable cut produced by the automatic spindle speed
regulation. For purposes of comparison, the microphone data
and spectrum have been plotted at the same scale as Figure

www.manaraa.com

Ill
UNSTABLE CUT — 1438 RPN — 0.0B0 IMMERSION MICROPHONE2.Z

U 1.1 0L 0.0 TS -1.1
-z.z

0.00 0.10 0.Z0 0.30 0.40

0.35
0.Z7nA 0.18G 0.09
0.00 0 500 1000 1500 Z000FREQ (Hz)

(a)
STABLE CUT — Z394 RPM — 0.080 IMMERSION MICROPHONEZ.Z

U 1.1 0L 0.0 IS -1.1
-z.z 0.00 B.10 0.20 0.30 0.40TIME (sec) SPECTRUM0.35
0.25HA 0.18G 0.09
0.00 0 500 1000 1500 2000FREQ (Hz)

(b)
Figure 6.14. Microphone Data Sampled During the Demonstration

of the Chatter Recognition and Control System.
a) Initial Unstable Cut;
b) Stable Cut after Spindle Speed Regulation.

TINE (sec) SPECTRUN
308 j j

; ;

j *

www.manaraa.com

112
6.14.a. The peaks in the spectrum now belong to the harmonics
of the spindle frequency, 39.9 Hz. The system has produced a
stable cut resulting in a significant increase in the MRR.

The increase in spindle speed produced by the automatic
speed regulation resulted in a 66 percent increase in the MRR.
A series of cuts were then made at the stable speed found by
the system, and it was determined that the axial depth of cut
could be increased to 0.110 inches before chatter again
appeared. This represents another 57 percent increase in the
MRR compared to the stable 0.070 inch immersion cut made at
the original speed.

It should be noted that the speed range of the Omnimil
restricts application of the chatter system to tools with
relatively low natural frequencies. For tools with high
natural frequencies, such as end mills, a high speed spindle
is needed to reach the stable speeds selected by the scheme.

Spindle Torque Overload System

In Chapter 3 it was shown that, although armature current
is the best indicator of motor torque, the speed drop
(deceleration) of the spindle could be taken as an indication
of the inability of the motor to recover from a sudden
overload. The Spindle Torque Overload program, listed in
Appendix B, monitors the speed by processing the once-per-
revolution signal from the spindle encoder. If the actual

www.manaraa.com

113
speed falls below the commanded CNC speed by a specified
limit, then a torque overload is declared and a fast stop is
commanded to the MCP. If a speed change is being commanded
from a CNC block, or by one of the supervision schemes, the
routine resets the limit based on the new speed and continues
monitoring.

Figure 6.15 shows a plot of the spindle speed, and Figure
6.16 shows the Y axis tachometer voltage, during a spindle
slow down while cutting cast iron with a 4.25 inch diameter
8 toothed face mill on a long extension. The feedrate was 80
in/min in a full slotting cut with an axial immersion of 0.050
inches. The CNC commanded speed was 1450 RPM (1438 RPM
actual).

Cuts using these parameters had been monitored with the
Spindle Torque Overload software, and it was determined that
the spindle speed dropped to about 1409 RPM at the entry to
the cut. For the purposes of the demonstration the limit speed
was set to 98 percent of the CNC speed, although a value of 95
percent would be more reasonable in an actual monitoring
situation.

The discrete nature of the spindle speed signal shown in
Figure 6.15 is a result of the digital tachometer implemented
in the supervision computer, and is also due to the small
speed variation used in the demonstration. When the speed
dropped below the limit, the fast stopping routine was called
and the spindle recovered to its non-cutting speed. Figure

www.manaraa.com

SPINDLE SPEED (DIGITAL TACH) — STALL TEST
M S B

M 4 0

M Z B

14BB 4.B TINE (sec) 6.0

Figure 6.16. Spindle Speed During a Slow Down at the
Entry to a Cut.

V AXIS TACHOHETER — STALL TEST
8.0

4.0

2.0

0.0 2.0 3.8 4.0 5.0 6.0TINE (sec)

Figure 6.17. Y Axis Tachometer Showing the Fast Stop
Called by the Spindle Slow Down.

www.manaraa.com

115
6.16 shows the beginning of the motion command to the Y axis,
and the fast stop being triggered by the spindle slow down.

The 0.100 second delay evident between the speed drop and
the fast stop is due to the software overhead required to
update the tachometer and to check that the speed change did
not originate in the CNC (using the GetSpindleSpeed
subroutine). Although the fast stop would be triggered before
the spindle speed approached zero in a true stall, this delay
may not be acceptable at higher speeds and feeds. It is
proposed, therefore, that the scheme could eventually be
developed to make use of the spindle motor current to sense
torque directly.

The demonstrations and experimental results described in
this chapter show that the individual monitoring and control
schemes have been successfully integrated into a machine tool
supervision system. In Chapter 7 the research will be
summarized, and suggestions for further developing the system,
and the individual monitoring and control schemes, will be
presented.

www.manaraa.com

CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

The experimental results presented in Chapter 6 show that
each of the monitoring and control schemes in the on-line
supervision system performed as required. The supervision
subroutines, described in Chapter 4, provided an effective
means for the schemes to take control of the Omnimil when
sensed data indicated that action must be taken.

The A/C system successfully regulated the cutting
feedrate by monitoring the spindle vibration. However, more
cutting tests are needed to fully develop the new
implementation of the scheme, especially as regards the
processing of the inductance probe signal.

The Broken Tool Detection system was shown to be able to
identify the characteristic signature of tool breakage. Vierck
(1991) is presently developing the scheme to include automatic
thresholding, and Walters (1991) is studying the effect of
different signal processing techniques.

The Chatter Regulation and Control system demonstrated
that stable cutting speeds could be automatically selected
once chatter was detected. The speed range of the Omnimil
makes the scheme most successful when tools with relatively
low natural frequencies are used.

116

www.manaraa.com

117
The Spindle Torque Overload system was able to protect

against a stall of the spindle motor by commanding a fast stop
when the actual spindle speed differed from the CNC speed by
a specified limit. The scheme could be improved, however, by
using the spindle motor current as an indication of torque,
instead of sensing a speed change.

The supervision subroutines were shown to provide the
machine control necessary for the supervision schemes to
operate effectively. An improvement to the fast stopping
routine would be updating the axis position tables inside the
MCP to eliminate the CNC following error, instead of moving
the drives. This will be studied in future research.

The overall performance of the supervision system at this
stage may be characterized as satisfactory, but it must be
noted that the system is still in its infancy. Real
improvements will be identified only after thorough testing of
each of the schemes in a variety of cutting situations.

In order for the supervision system to be truly
comprehensive, the monitoring and control schemes must be run
simultaneously. This could be accomplished by either parallel
processors or distributed computing. The parallel processors
could be four DSP chips, located in the supervisory computer,
each of which is executing one of the schemes. The use of a
network of distributed computers to execute the schemes in
parallel is presently being studied by Walters (1991).

www.manaraa.com

118
The off-line machine evaluation program, PCDATA, was

described in Chapter 5. The Data Acquisition Module was used
to monitor sensor signals throughout the experimental work,
and the Transfer Function Module was used to measure Transfer
Functions of tools used in cutting the tests.

The off-line system could be significantly enhanced by
adding modal parameter estimation and curve fitting. This
facility, operating on Transfer Function data from PCDATA,
could then be used to automatically generate input to the
milling simulation programs that have been developed in the
Machine Tool Laboratory. The result could be a very powerful
automated machine evaluation system combining actual
measurements with simulations of the cutting process.

An implicit objective in this research has been to
demonstrate the feasibility of having an external supervisory
computer work in conjunction with a machine tool controller to
monitor and control the metal cutting process. The success of
the research suggests that manufacturers of machine tool
controllers should begin to provide direct support for
communication between the CNC and external computers. Also,
they should make available, through the interface, the
critical CNC control parameters necessary for machine tool
users to implement various monitoring and control strategies.
This can lead to a higher level of productivity and product
quality in the manufacturing culture of this country.

www.manaraa.com

APPENDIX A
LISTING OF THE SUPERVISION SOFTWARE

This appendix includes listings of the interface and
supervision programs. It should be noted that global variables and
flags for if ace. c and stop.c are declared in the header file
oem_dec.h, which is not included in the listing.

Supervision Computer Interface

/ * /
/* Title: PCIFACE.C ver 1.0 */
/* By: R.L. Wells and R. Walters */
/* Date: 05-31-91 *//* * /
/* Interface between the supervision computer and the */
/* FlexMate CNC. The supervision subroutines are: */
/* void Dt2817Init (void); */
/* void FastStop (void); */
/* void ClearFastStop (void); */
/* void ExtFeedhold (void); */
/* void SetFeedOvrd (int pfp); */
/* void GetFeedrate (long *fr); */
/* void GetManFeedOvrd (int *mfp); */
/* void SetSpindleSpeed (int ns); */
/* void GetSpindleSpeed (int *rpm); */
/ * /

#include <stdio.h>
#include <math.h>
#include <conio.h>
#include <time.h>
/* Define the control and data registers for the DT-2817. */

119

www.manaraa.com

120
#define CONTROL REGISTER 0x228
#define DATA_REG0
#define DATA_REG1
#define DATA_REG2
#define DATA REG3

0x229
0x22a
0x22b
0x22c

/* Assign the working bit values. */
#define FIB_INTERRUPT
#define TRANS_REQ
#define ACKNOWLEDGE

0x80
0x04
0x01

/* Define command data type constants. */
#define RPC_SH0RT
#define RPC LONG

0
1
2
3
4

#define RPC_SHORT_ARY
#define RPC_LONG_ARY
#define RPC VOID
/* The command name numbers MUST MATCH the command name */
/* numbers that are defined in the FlexMate interface */
/* program IFACE.C. They MUST be between 200 and 250! */

/* Variables used for input and output data are global. */
unsigned int dataoutO, dataoutl, datain2, datain3;
/* Function prototypes for the low level interface. */
void interrupt_mcp (int int_cmd);
void write_to_mcp (int output_data_value);
void read_from_mcp (int *input_data_value);
void mcp_call (int mcp_cmd, int out_data_type, char *out_data,
int in_data_type, char *in_data);
void acknowledge (void);
/* Function prototypes for the supervision routines */
void Dt2817Init (void)?
void FastStop (void);
void ClearFastStop (void);
void ExtFeedhold (void);
void SetFeedOvrd (int pfp);
void GetFeedrate (long *fr);
void GetManFeedOvrd (int *mfp);

#define EXT_FEED_HOLD
#define SPEED_CHANGE
#define GET SPEED

201
202
203
204
205

#define GET_FEED
#define GET FEED_OVRD

www.manaraa.com

121
void SetSpindleSpeed (int ns);
void GetSpindleSpeed (int *rpm);
/ * */

void FastStop()
{/* Execute the FAST STOP routine. */

interrupt_mcp (Oxfd);
acknowledge ();

} /* end of Faststop */
/ * */

void ClearFastStop()
{/* Clear the FAST STOP routine. */

interrupt_mcp (Oxfc);
acknowledge ();

} /* end of ClearFastStop */
/ * */
void ExtFeedhold()
{/* Each call to this function TOGGLES an EXTERNAL FEEDHOLD. */
mcp_call (EXT_FEED_HOLD, RPC_VOID, NULL, RPC_VOID, NULL);
} /* end of ExtFeedhold */
yic--*/
void GetFeedrate (long *fr)
{/* Get the current FEED RATE (in/min*1000) from the MCP. */
mcp_call (GET_FEED, RPC_VOID, NULL, RPC_LONG, (char *)fr);
*fr /= 1000;
} /* end of GetFeedrate */
/ * */

void GetManFeedOvrd (int *mfp)
{/* Get the MANUAL FEED OVERRIDE (percent) from the MCP. */
mcp_call (GET_FEED_OVRD, RPC_VOID, NULL, RPC_SHORT, (char *)mfp);
} /* end of GetManFeedOvrd */
/ * */

void GetSpindleSpeed (int *rpm)
{/* Get the current SPINDLE SPEED * OVERRIDE from the MCP. */
mcp_call (GET_SPEED, RPC_V0ID, NULL, RPC_SHORT, (char *)rpm);

www.manaraa.com

122
} /* end of GetSpindleSpeed */
/ * */
void SetSpindleSpeed (int ns)
{/* Set the SPINDLE SPEED (RPM) in the MCP. */
mcp_call (SPEED_CHANGE, RPC_SHORT, (char *)&ns, RPC_VOID, NULL);
) /* end of SetSpindleSpeed */
/ * */
void SetFeedOvrd (int pfp)
{int i = 0;
/* Set the FEEDRATE OVERRIDE (percent) in the MCP. */
OUtp (DATA_REG0, ~(pfp)),*
dataoutl = inp (DATA_REG1) ! FIB_INTERRUPT;
/* Hold FlexMate FIB interrupt bit high for 5 ms. */
/* NOTE: The speed of the for loop depends on the */
/* clock speed of the supervisory computer! */
for (i = 0; i < 300; i++) outp (DATA_REG1, dataoutl);
/* Clear the FlexMate FIB interrupt bit. */
dataoutl = inp (DATA_REG1) A FIB_INTERRUPT;
outp (DATA_REG1, dataoutl);
/* Clear the interrupt command value. */
outp (DATA_REG0, ~(0x0 0));
} /* end of SetFeedOvrd */
/ * --
/* ** */
/* The functions below this comment constitute the low level */
/* interface and should not be changed WITHOUT GOOD REASON! */
y * * */

void Dt2817Init ()
{/* Set ports 0 & 1 for output and ports 2 & 3 for input. */

outp (CONTROL_REGISTER, 0x3);
/* Be sure that both output ports are low. Note that */
/* the IOQ reads inverted, and the FIB reads normal. */

OUtp (DATA_REG0, Oxff);
outp (DATA_REG1, 0x7f);

} /* end of Dt2817Init */

www.manaraa.com

123
/ * */
/**/
/* This function handles all the communication with the MCP */
/ A * /

void mcp_call (int mcp_cmd, int out_data_type, char *out_data,
int in_data_type, char *in_data)

{unsigned int temp;
/* Get the attention of the FlexMate MCP. */

interrupt_mcp (Oxfe);
/* Write the command code to the MCP. */

write_to_mcp (mcp_cmd);
/************ Write the output data *************/

write_to_mcp (out_data_type);
switch (out_data_type)

{case RPC_SHORT: /* Send short integer to MCP. */
write_to_mcp ((*(int *)out_data));
break;

case RPC_LONG: /* Send long integer to MCP. */
/* Send high order word */
write_to_mcp ((*(unsigned *)(out_data + 2)));
/* Send low order word */
write_to_mcp ((*(unsigned *)out_data));
break;

case RPC_SHORT_ARY: /* Send array of shorts to MCP. */
break;

case RPC_LONG_ARY: /* Send array of longs to MCP. */
break;

case RPC_VOID: /* Send no data to MCP */
break;

default:
break;

}
/*********** Read the input data. **************/

write_to_mcp (in_data_type);
switch (in_data_type)

{case RPC_SHORT: /* Read short integer from MCP. */

www.manaraa.com

124
read_from_mcp (&temp);
*(int *)in_data = temp;
break;

case RPC_LONG: /♦ Read long integer from MCP. ♦/
read_from_mcp (&temp);
/♦ Store high order word ♦/
♦(unsigned int *)(in_data +2) = temp?
read_from_mcp (&temp);
/♦ Store low order word ♦/
♦(unsigned int ♦)(in_data) = temp?
break;

case RPC_SHORT_ARY: /♦ Read array of shorts from MCP ♦/
break;

case RPC_LONG_ARY: /♦ Read array of longs from MCP ♦/
break ?

case RPC_VOID: /♦ Read no data from MCP. ♦/
break ?

default:
break ?

}outp (DATA_REGO, "(0x00)); /♦ Clear the data line ♦/
} /♦ end of mcp_call ♦/
/ * */
void interrupt_mcp (int int_cmd)
{/♦ If int_cmd = Oxfe, the interface is executed. ♦/
/♦ If int_cmd = Oxfd, the set fast stop is executed. ♦/
/♦ If int_cmd = Oxfc, the clear fast stop is executed. ♦/

outp (DATA_REG0, ~(int_cmd))?
/♦ Set the FlexMate FIB interrupt bit. ♦/

dataoutl = inp (DATA_REG1) j FIB_INTERRUPT ?
outp (DATAJREG1, dataoutl)?

/♦ Wait for Transmit Request bit to go high. ♦/
while (!((inp(DATA_REG3) A TRANS_REQ) & TRANS_REQ));

/♦ Clear the FlexMate FIB interrupt bit. ♦/
dataoutl = inp (DATA_REG1) A FIB_INTERRUPT?
outp (DATA_REG1, dataoutl);
outp (DATA_REG0, "(0x00))?

} /♦ end of interrupt_mcp ♦/

www.manaraa.com

125
/**/
/* This subroutine reads a two-byte word from the I/O space */
/* of the MCP. NOTE: The logic of the MCP I/O space is */
/* inverted, so that a 1 in the computer is a 0 in the MCP. *//**/
void read_from_mcp (int *input_data_value)
{unsigned int low_byte, high_byte;
/* Low byte transfer. */
/* Wait for a transmit request signal from the MCP. */

while (!((inp(DATA_REG3) A TRANS_REQ) & TRANS_REQ));
/* Read the low byte from the MCP on port 2. */

low_byte = inp (DATA_REG2) A Oxff;
/* Set the ACKNOWLEDGE bit on port 1. */

dataoutl = inp (DATA_REG1) A ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

/* Wait for a transmit stop signal from the MCP. */
while (I(inp (DATA_REG3) & TRANS_REQ));

/* Clear the ACKNOWLEDGE bit on port 1. */
dataoutl = inp (DATA_REG1) | ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

/* High byte transfer. */
/* Wait for a transmit request signal from the MCP. */

while (! ((inp(DATA__REG3) A TRANS_REQ) & TRANS_REQ)) ;
/* Read the high byte from the MCP on port 2. */

high_byte = inp (DATA_REG2) A Oxff;
/* Set the ACKNOWLEDGE bit on port 1. */

dataoutl = inp (DATA_REG1) A ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

/* Wait for a transmit stop signal from the MCP. */
while (! (inp (DATA__REG3) & TRANS_REQ)) ;

/* Clear the ACKNOWLEDGE bit on port 1. */
dataoutl = inp (DATA_REG1) j ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

/* Construct the data word. */
*input_data_value = low_byte + high_byte * 256;

} /* end of read_from_mcp */

www.manaraa.com

126
/ * /
/* This subroutine writes a two-byte word to the I/O space */
/* of the MCP. NOTE: The logic of the MCP I/O space is */
/* inverted, so that a 1 in the computer is a 0 in the MCP. */
/ * /

void write_to_mcp (int output_data_value)
{unsigned int low_byte, high_byte;
/* Obtain low and high bytes of the output_data_value word. */

high_byte = output_data_value / 256;
low_byte = output_data_value - high_byte * 256;

/* Wait for a transmit request signal from the MCP. */
while (!((inp (DATA_REG3) A TRANS_REQ) & TRANS_REQ));

/* Put the low byte on port 0. */
outp (DATA_REG0, ~(low_byte));

/* Set the ACKNOWLEDGE bit on port 1. */
dataoutl = inp (DATA_REG1) A ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

/* Wait for a transmit stop signal from the MCP. */
while (!(inp (DATA_REG3) & TRANS_REQ));

/* Clear the ACKNOWLEDGE bit on port 1. */
dataoutl = inp (DATA_REG1) J ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

/* Wait for a transmit request signal from the MCP. */
while (!((inp (DATA_REG3) A TRANSJREQ) & TRANS_REQ));

/* Put the high byte on port 0. */
outp (DATA_REG0, ~(high_byte));

/* Set the ACKNOWLEDGE bit on port 1. */
dataoutl = inp (DATA_REG1) A ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

/* Wait for a transmit stop signal from the MCP. */
while (!(inp (DATA_REG3) & TRANS_REQ));

/* Clear the ACKNOWLEDGE bit on port 1. */
dataoutl = inp (DATA_REG1) J ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

} /* end of write_to_mcp */
/* */

www.manaraa.com

127
void acknowledge ()
{/**/
/* This subroutine can be used to acknowledge an interrupt */
/* to the MCP without having to go through a data transfer. *//**/
/* Set the ACKNOWLEDGE bit on port 1. */

dataoutl = inp (DATA_REG1) A ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

/* Wait for a transmit stop signal from the MCP. */
while (!(inp (DATA_REG3) & TRANS_REQ));

/* Clear the ACKNOWLEDGE bit on port 1. */
dataoutl = inp (DATAJREGl) I ACKNOWLEDGE;
outp (DATA_REG1, dataoutl);

} /* end of acknowledge */
/ * */

FlexMate Motion Co-Processor Interface

/***/
/* Title; IFACE.C (Interace handler for Omnimil machine */
/* supervision system, Univ. of Florida) */
/* Date: 05-31-91 */
/* Authors: R. Walters and R.L. Wells */
/* Version: 1.0 *//***/
#include <mcl.h>
#include <globals.h>
#define IFACE
#include ,,oem_dec.h"
#define fib_port_address 0x90
/* Add new supervision command numbers here (201-250) */
#define ext_feedhold 201
#define speed_change 202
#define get_speed 203
#define get_feed 204
#define get_feed_ovrd 205

www.manaraa.com

128
enum
{ rpc_short,
rpc_long,
rpc_short_ary,
rpc_long_ary,
rpc_void

} data_type;
/* Function prototypes */
int read_word();
int write_word();
void iface_set_bit();
void iface_clear_bit();
void acknowledge();
int hold, error_code, rpc_ptr;
/ * --
void iface_init() /* This routine called once at power on
{ /* Clear the output lines. */
output_data_address = 0x00;
unpack (output_data_address, SCT + output_port_address,
outport (output_port_address, output_data_address);
/* Set all control flags and variables to false */
int_cmd = 0;
fast_stop_flag = 0;
fast_stop_state = 0;
feed_hold_flag = 0;
pfo_percent = 0;
/* Set maximum feed override to 201 percent */
getw(FROTOP) = 0x00c9;
/* Initialize the FIB interupt (FIB bit zero) */
/* set FIB card for address 60 */
getw(FASTIOTB) = 0x60;
/* get maps to OEM_MAIN */
getw(FIMAPS + attention_req) = 0x20;
/* get the address of the interrupt function */
getfunction(hold,iface_interrupt);
/* point the interrupt to it */
getw(FAREATB + attention_req) = hold;
/* set leading edge interrupt */
getw(FLEADTB + attention_req) = Oxffff;
/* clear trailing edge interrupt */
getw(FTRAILTB + attention_req) = 0;

 */

time */

16) ;

www.manaraa.com

129
/* clear both edge interrupt */
getw(FBOTHTB + attention_req) = 0;

}/* end of iface_init */
/ * */
void iface_clear() /* This routine called when CLEAR is pushed */
{} /* end of iface_clear */

 */

void iface_main() /* Main interface handler */
{ /* Maintain internal feedhold if FAST STOP is active */
if (feed_hold_flag == 1) mcl_feedhold_on ();
if (getw(SWPTYPE) == 0) /* If routine is called by MAIN */

{
/* Acknowledge completion of the FAST STOP if necessary */
if ((int_cmd == OxOOfd) && (fast_stop_state == 2))

{int_cmd = 0;
acknowledge ();
}

/* Acknowledge clearing of the FAST STOP if necessary */
if ((int_cmd == OxOOfc) && (fast_stop_state == 5))

{mcl_feedhold_off ();
feed_hold_flag = 0;
int_cmd = 0;
acknowledge ();
}

/* Data Transfer is begun if the interrupt command = Oxfe */
if (int_cmd == OxOOfe)

{rpc_ptr =0; /* Initialize table pointer */
/* Read command word */
error_code = read_word(RPC_COMMAND_ADD);
/* Read input data type */
error_code = read_word(INP_DATA_TYPE_ADD);
switch(input_data_type)

{case rpc_short: /* read one word */
error_code = read_word(RPC_DATA_ADD);

www.manaraa.com

130
break;

case rpc_long: /* read two words */
error_code = read_word(RPC_DATA_ADD);
error_code = read_word(RPC_DATA_ADD + 1);
break;

case rpc_short_ary:
break;

case rpc_long_ary:
break;

case rpc_void: /* read no words */
break;

default:
break;

>

/* Read output data type */
error_code = read_word(OUT_DATA_TYPE_ADD);

/**/
/* Place SUPERVISION ROUTINES in switch after this comment */
/* NOTE: The fast stop routine and changing the programmed */
/* feedrate override are handled separately! *//**/

switch(rpc_command)
{case ext_feedhold: /* External feed hold */
set (FDHOLDRQ);
break;

case speed_change: /* Change spindle speed */
getw(CURS) = getw(RPC_DATA_ADD);
break;

case get_speed: /* Get spindle speed */
getw(RPC_DATA_ADD) = getw(SPDRPM);
break;

case get_feed: /* Get current FWORD */
/* FWORD = (inches/min)*1000 */
getd(RPC_DATA_ADD) =getd(CURF);
break;

case get_feed_ovrd: /* Get manual feed override */
getw(RPC_DATA_ADD) = getw(MFOP);
break;

default:
break;

}

/* Do not modify code after this comment */

www.manaraa.com

/* Write back data, if necessary */
switch(output_data_type)

{case rpc_short: /* write one word */
error_code = write_word(RPC_DATA_ADD);
break;

case rpc_long: /* write two words */
error_code = write_word(RPC_DATA_ADD);
error_code = write_word(RPC_DATA_ADD + 1);
break;

case rpc_short_ary:
break;

case rpc_long_ary:
break;

case rpc_void: /* write no words */
break;

default;
break;

} /* end of switch(output_data_type) */
int_cmd = 0; /* Set int_cmd to FALSE */
} /* end of if(int_cxnd == OxOOfe) */

return; /* Exit if run from MAIN */
} /* end of if(getw(SWPTYPE) ==0) */

} /* end of iface_main */
/ * ---

void iface_interrupt()
/* This routine is run on the interrupt by the FIB card */
{ /* Read in data from interrupt */
input(input_port_address,input_data_reg);
int_cmd = input_data_address & OxOOff;
/* Execute FAST STOP if requested */
if (int_cmd == OxOOfd)

{/* The FAST STOP is managed in stop.c (OEM_SYNC) */
getw(NORMPFL) = -1; /* Step change in cmd generation */mcl feedhold on (); /* Stop interpolation by feedhold */getw(X1INHDPE) = -1; /* Zero volts to X axis servo */getw(X2INHDPE) = -1; /* Zero volts to Y axis servo */pfo_value_set(1); /* One percent feedrate override */feed_hold_flag = 1 ;
fast_stop_flag = 1 ;
fast_stop_state = 0;
}

/* Clear FAST STOP feedhold if requested */
if ((fast_stop_flag == 1) && (int_cmd == OxOOfe))

www.manaraa.com

132
{/* The FAST STOP is cleared in stop.c (OEM_SYNC) */
fast_stop_state = 3;
}

/* Set programmed feedrate override (200 percent max). */
/* The feedrate override is maintained in stop.c (OEM_SYNC) */
/* NOTE: The feedrate change is not acknowledged. */
if ((int_cmd > 0) && (int_cmd < 0x00c9))
(pfo_percent = int_cmd;
pfo_value_set (pfo__percent) ;
int_cmd = 0;
)

/* Execute the interface communication protocol */
iface_main();
clear(SWPTYPE);

} /* end of iface_interrupt */
/ * */

int read_word(address)
int address;
/* Read 2 bytes from the PC and store into one word at the */
/* specified address. Will eventually return error code. */

{ iface_set_bit(TR_BIT_MASK); /* Set the TR bit */
for(;;) { /* wait for ack bit to be set */

input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) != 0) break;
)

/* read first byte */
getw(address) = input_data_address & OxOOff;
iface_clear_bit(NOT_TR_BIT_MASK); /* clear the TR bit */
for(;;) { /* wait for ack bit to be cleared */

input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) == 0) break;
}

iface_set_bit(TR_BIT_MASK); /* Set the TR bit */
for(;;) { /* wait for ack bit to be set */

input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) != 0) break;
}

www.manaraa.com

133
/* read second byte */
getw(address) J= (input_data_address & OxOOff) * 256;
iface_clear_bit(NOT_TR_BIT_MASK); /* clear the TR bit */
for(;;) { /* wait for ack bit to be cleared */

input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) == 0) break;
}return (0);

} /* end of read_word */
/ * */

int write_word(address)
int address;
/* Write 2 bytes to the PC that come from the specified */
/* memory address. Will eventually return an error code. */

{ /* set data lines with lower byte from address */
output_data_address = ((getw(address)) & OxOOff);
unpack(output_data_address,SCT + output_port_address,16);
outport(output_port_address,output_data_address);
iface_set_bit(TR_BIT_MASK); /* Set the TR bit */
for(;;) (/* wait for ack bit to be set */

input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) != 0) break;
}

iface_clear_bit(NOT_TR_BIT_MASK); /* clear the TR bit */
for(;;) { /* wait for ack bit to be cleared */

input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) == 0) break;
}

/* set data lines with high byte from address */
output_data_address = ((getw(address)) / 256);
unpack(output_data_address,SCT + output_port_address,16);
outport(output_port_address,output_data_address);
iface_set_bit(TR_BIT_MASK); /* Set the TR bit */
for(;;) { /* wait for ack bit to be set */

input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) != 0) break;
}

iface_clear_bit(NOT_TR_BIT_MASK); /* clear the TR bit */

www.manaraa.com

134
for(;;) { /* wait for ack bit to be cleared */

input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) == 0) break;
}return (0);

} /* end of write_word */
/ * */

void iface_set_bit(mask)
int mask;
/* Set a bit on the output port using the supplied mask */
{ output_data_address = pack(SCT + output_port_address,16);
output_data_address j = mask;
unpack(output_data_address,SCT + output_port_address,16);
outport(output_port_address,output_data_address);

} /* end of iface_set_bit */
/ * */

void iface_clear_bit(mask)
int mask;
/* Clear a bit on the output port using the supplied mask */
{ output_data_address = pack(SCT + output_port_address,16);
output_data_address &= mask;
unpack(output_data_address,SCT + output_port_address,16);
outport(output_port_address,output_data_address);

} /* end of iface_clear_bit */
/ * */

void acknowledge ()
/* This routine can be used to acknowledge an interrupt */
/* without initiating a data transfer through iface_main. */
{ iface_set_bit(TR_BIT_MASK); /* Set the TR bit */
for(;;) /* Wait for ack bit to be set */
(input(input_port_address,input_data_reg);
if((input_data_address & ACK_BIT_MASK) 1= 0) break;
}iface_clear_bit(NOT_TR_BIT_MASK); /* Clear the TR bit */

} /* end of acknowledge */
/ * */

www.manaraa.com

Fast Stopping Program
135

/ * /
/* Title: STOP.C (Fast stopping routine for machine */
/* supervision system, Univ. of Florida) */
/* Date: 05-31-91 */
/* Author: R.L. Wells */
/* Version: 1.0 */
/ * y

#include <mcl.h>
#include <globals.h>
#define STOP
#include <stdlib.h>
#include "oem dec.h"
#define XERR 0x1825
#define axis ep value(A) getd(&((long *)XERR)[A])
#define XCOMM 0xl7dd
#define axis cmd_posn(A) getd(&((long *)XCOMM)[A])
#define XFBK 0x1801
#define axis fbk_posn(A) getd(&((long *)XFBK)[A])
#define XREF 0xl7e9
#define axis_ref_posn(A) getd(&((long *)XREF)[A])
#pragma macro dacout([index ,=],[value,_])
$asm Ida index ; /* NOTE: */$asm add A ; /* TABS bewteen */$asm add =X11A561 ; /* each of the */$asm lde *A ; /* elements in */$asm Ida value ; /* these lines. */$asm ioa *E ? /* BEWARE! */#pragma endmacro
long last_x_fbk, last_y_fbk, test_x, test_y;
int move, x_in_position, y_in_position;
/’ */
void stop_init() /* This routine is called once at power up */
{fast_stop_state = 0; feed_hold_flag = 0 ; test_x = 0; test_y = 0;
last_x_fbk = 0; last_y_fbk = 0; pfo_percent = 0; move = 0;
x_in_position = 0; y_in_position = 0;
) /* end of stop_init */
/ * ------------------------- */

www.manaraa.com

136
void stop()
{if (fast_stop_flag 1= 1) /* If fast stop is not active */

{/* Maintain the current programmed feedrate override */
pfo_value_set (pfo_percent);
)if (fast_stop_flag == 1) /* If fast stop requested */
{/* Keep the programmed feedrate override at 1 percent */
pfo_value_set (1);

/* Use the switch function as a state controller to */
/* synchronize the axis monitoring with SYNC passes. */

switch (fast_stop_state)
{case 0:
x_in_position =0;
y_in_position =0;
fast_stop_state = 1;
/* No break for this case, code continues to case 1 */

case 1: /* Be sure the X and Y axes stop moving */
test_x = labs(axis_fbk_posn(0) - last_x_fbk);
test_y = labs(axis_fbk_posn(l) - last_y_fbk);
if ((test_x > 2) && (test_y >2)) /* Tenths */

fast_stop_state = 1;
else

fast_stop_state = 2;
last_x_fbk = axis_fbkjposn(0);
last_y_fbk = axis_fbk__posn(l) ;
break;

case 2:
/* This fast_stop_state waits for the clear_fast_stop */
break;

case 3:
/* Fast_stop_state is set equal to 3 by the */
/* ClearFastStop int_cmd in iface.c (0EM_MAIN) */
getw(XHNHDPE) = 1; /* Enable X axis DAC for output */
getw(X2INHDPE) = 1; /* Enable Y axis DAC for output */
test_x = axis_ref_posn(0) - axis_fbk_posn(0);
test_y = axis_ref_posn(l) - axis_fbk_posn(l);
if (test_x >5) /* Tenths */

{move = 0x0180; /* 384 DAC units */
dacout(0, move);
}if (test_x < -5) /* Tenths */

www.manaraa.com

137
{move = 0x8180; /* -384 DAC units */
dacout(0, move);
}if (test_y >5) /* Tenths */
{move = 0x0180; /* 384 DAC units */
dacout(l, move);
}if (test_y < -5) /* Tenths */
{move = 0x8180; /* -384 DAC units */
dacout(l, move);
)if (labs(test_x) <= 10)
{getw(XHNHDPE) = -1;
x_in_position = 1;
)if (labs(test_y) <= 10)
{getw(X2INHDPE) = -1;
y_in_position = 1;
}if ((x_in_position == 1) && (y_in_position == 1))
(getw(NORMPFL) = 0;
/* XCOMM table must be updated to XREF table */
axis_cmd_posn(0) = axis_ref_posn(0);
axis_cmd_posn(l) = axis_ref_posn(l);
fast_stop_state = 4;
}break;

case 4: /* Reconnect the X and Y axis servos */
getw(XIINHDPE) = 0;
getw(X2INHDPE) = 0;
fast_stop_state = 5;
fast_stop_flag = 0;

break;
/* Completion of the fast stop is acknowledged in */
/* iface.c (0EM_MAIN) when fast_stop_state = 5 */
default:

break;
} /* end of switch(fast_stop_state) */

} /* end of if(fast_stop_flag) */
} /* end of stop */
/ * --

www.manaraa.com

APPENDIX B
LISTING OF THE SPINDLE TORQUE OVERLOAD PROGRAM

/ * /
/* TORQUE.C — By: R.L. Wells and J. Frost Date: 05-28-91 */
/* This program monitors the spindle encoder of the Omnimil */
/* and declares a torque overload if the actual speed differs */
/* from the commanded speed by more than a specified amount. */
/* Include torque.c, pciface.c and dt2818.c in the make file. */ ^/** *•* **/
#include <stdio.h>
#include <stdlib.h>
#include <dos.h>
#include <graph.h>
#include <math.h>
#define LPT1M 0x037a
#define PICTRL 0X20
#define PICMSK 0x21
#define TMODE 0X43
#define TODATA 0X40
#define MAX 32000
#define M^FPJseg, ofs) ((void far *) \

(((unsigned long)(seg) « 16) j (unsigned)(ofs)))
/* Function prototypes. */
void startclk();
void enaclk();
void enalpt();
void disaclk();
void disalpt();
void far *getiv();
void setiv();
void far interrupt clk();
void far interrupt lptlack();
unsigned int outctr = 0, outrem = 0, ctr = 0;
/ * */

138

www.manaraa.com

void main()
{void far *dosclk ;
void far *doslpt ;
double count = 0.0, speed = 0.0, trigspeed = 0.0;
float speedout = 0.0, pth = 0.0, thresh = 0.50;
int ncspeed = 0, testspeed = 0, cnt, pfo = 100;
int startflag = 0;
char a ;
/* Initialize the digital I/O port (MCP interface). */
Dt2817Init ();
start;
startflag = 0;
_clearscreen(_GCLEARSCREEN); _settextposition (1,1);
printf (•'*** SPINDLE TORQUE OVERLOAD DETECTION ***\n\n") ;
/* Wait for a spindle speed to be programmed to the MCP. */
while (1)

{GetSpindleSpeed (Sncspeed);
_settextposition (3,1);
printf ("Commanded CNC spindle speed = %4d (RPM)", ncspeed)
if(kbhit())

{_settextposition (11,1);
printf ("\n\nSystem terminated by user.\n");
exit (1);
}if (ncspeed >10) break;

}
/* Enter the spindle speed threshold */
_settextposition (5,1);
printf ("Enter the trigger threshold; (%% of CNC speed) ");
scanf ("%f", &pth);
thresh = pth / 100;
trigspeed = (double)(ncspeed * thresh);
/* Set up the tachometer by redirecting the */
/* SYSTEM CLOCK and LPT1 interrupt vectors */
dosclk = getiv(0x0008);
setiv(0x0008, elk);
doslpt = getiv(OxOOOf);
setiv(OxOOOf,lptlack);
enaclk();
enalpt();
SetFeedOvrd (pfo);

www.manaraa.com

140
/* Wait for the spindle to get up to speed. */
ctr = 0 ; count = 0.0; cnt = 0; speed = 0.0;
while(1)

{count = (double)outctr * 65536.0 + (65536.0-(double)outrem);
if (count <= 0.0) count = 1.0;
speed = 1.1931817e6 / count * 60.0;
if ((speed > trigspeed) && (cnt > 1000)) break;
cnt += 1; if (cnt > MAX) cnt =0;
}
*************** Monitor Spindle Speed ***************** */

ctr = 0 ; count = 0.0; cnt =0; speed = 0.0;
while(1)

{/* Calculate the trigger speed. */
trigspeed = (double)(ncspeed * thresh);
_settextposition (7, 1);
printf ("Minimum allowed speed = % 4.0lf (RPM) ", trigspeed);
/* Read the tachometer. */
count = (double)outctr * 65536.0 + (65536.0-(double)outrem);
if (count <= 0.0) count = 1.0;
speed = 1.1931817e6 / count * 60.0;
_settextposition (9,1);
printf("Actual Spindle Speed = % 4.0lf (RPM) ", speed);
/* write speed on D/A channel 0 for data sampling. */
speedout = speed / 500.0;
write_da(0, Sspeedout);
/* Update the commanded spindle speed. */
GetSpindleSpeed (&ncspeed);
_settextposition (3, 1);
printf ("Commanded CNC spindle speed = %4d (RPM)", ncspeed);
/* Generate a fast stop if speed drops below the limit. */
if ((speed <= trigspeed) && (cnt > 2))

{/* Protect against false triggers. */
GetSpindleSpeed (Stestspeed);
if (testspeed <= trigspeed)

{startflag = 1;
goto cont;
}trigspeed = (double)(testspeed * thresh);

count = (double)outctr * 65536.0 + (65536.0-(double)outrem);
if (count <= 0.0) count = 1.0;
speed = 1.1931817e6 / count * 60.0;
if (testspeed != ncspeed) goto skip;

www.manaraa.com

141
if (speed >= trigspeed) goto skip;
FastStop ();
_settextposition (11,1);
printf ("SPINDLE SPEED BELOW ALLOWED LIMIT!\n");
printf ("\nFast stop command issued to the MCP.\n");
printf ("\nPress ANY KEY to clear the fast stop: ");
while (!kbhit())

{count = (double)outctr * 65536.0
+ (65536.0-(double)outrem);

if (count <= 0.0) count = 1.0;
speed = 1.1931817e6 / count * 60.0;
speedout = speed / 500.0;
write_da(0, Sspeedout);
}getch(); fflush(stdin);

ClearFastStop();
printf ("\n");
startflag = 1;
goto cont;
}

skip:
if (kbhit())

{_settextposition (11,1);
printf ("System terminated by user.\n");
getch(); fflush(stdin);
break;
)cnt += 1; if (cnt > MAX) cnt =0;

}
cont:
/* Restore the SYSTEM CLOCK and LPT1 interrupts. */
disalpt();
disaclk();
setiv(0x0008, dosclk);
startclk();
enaclk();
setiv(OxOOOf, doslpt);
if (startflag == 1) goto start;
SetFeedOvrd (pfo);
exit (1);
} /* end of main */
/ * */

www.manaraa.com

142
void enaclk()
{_asm in al, PICMSK ; /* unmask PIC timer bit */
_asm and al, Ofeh ;
_asm out PICMSK, al ;
} /* end of enaclk */
/ * */

void enalpt()
{_asm in al, PICMSK
_asm and al, 07fh
_asm out PICMSK, al
_asm mov dx,LPTlM
_asm in al,dx
_asm or al, OlOh
_asm out dx, al
} /* end of enalpt */
/ * */
void disaclk()
{_asm in al, PICMSK ; /* mask PIC serial bit */
_asm or al, Olh ;
_asm out PICMSK, al ;
} /* end of disaclk *// * */

void disalpt()
{_asm in al, PICMSK
_asm or al, 080h
_asm out PICMSK, al
_asm mov dx,LPTlM
_asm in al,dx
_asm and al, Oefh
_asm out dx, al
} /* end of disalpt */
/ * */

void far *getiv(unsigned inum)
{unsigned far *source;
source = MK_FP(0, inum«2) ;
return(MK_FP(*(source+l), *source));
} /* end of *getiv */
/ * */

/* mask PIC // port bit */

/* disable // interupt */

/* unmask PIC // port bit */

/* enable // interupt */

www.manaraa.com

143
void setiv(unsigned inum, void far *fptr)
{unsigned far *dest;
_asm cli
dest = MK_FP(0, inum«2)
*dest = FP_OFF(fptr)
dest++
*dest = FP_SEG(fptr)
_asm sti
} /* end of setiv */
/’
void far interrupt clk()
{asm inc ctr /* increment wrap counter */asm mov al,030h /* pmg. for write 2 bytes */asm out TMODE,al
asm mov al, 0
asm out TODATA,al /* load for full count */asm out TODATA,al
asm mov al,20h /* end of interrupt */asm out PICTRL,al
} /* end of elk */
/ * ------------------ k/
void startclk()
{

/* reprogram timer-0 for mode 3 */
asm mov al,036h /* pmg. for write 2 bytes */asm out TMODE,a1
asm mov al, 0
asm out TODATA,al /* load for full count */asm out TODATA,al
} /* end of startclk */
/ * ------------------------

void far interrupt lptlack()
{asm mov al, 0 /* latch counter */asm out TMODE,al
asm mov al,030h /* pmg. for read 2 bytes */asm out TMODE,al
asm in al,TODATA /* read low byte */asm mov ah, al
asm in al,TODATA /* read hi byte */asm xchg al, ah
asm mov outrem,ax /* store remanider */asm mov ax,ctr
asm mov outctr,ax /* store # wraps */asm mov ax, 0

www.manaraa.com

144
_asm
_asm
_asm
_asm
_asxn
_asm
_asm
_asm
_asm
_asm
_asm
} /*
/* -

mov ctr,ax /* zero wrap counter */mov al,030h /* pmg. for write 2 bytes */out TMODE,al
mov al, 0
out TODATA,al /* load for full count */out TODATA,al
mov dx,LPT1M /* enable // interupt */mov al, OlOh
out dx, al
mov al,20h /* end of interrupt */out PICTRL,al

end of lptlack */
 */

www.manaraa.com

APPENDIX C
LISTING OF THE MACHINE EVALUATION PROGRAM

REM **
REM * PCDATA.BAS : ver 1.0 *
REM * WRITTEN BY : R.L. Wells, with thanks to J. Frost *
REM * LAST MODIFIED : 06-13-91 *
REM * Use BCDATA.BAT to compile and LINKDATA.BAT to link. *REM **
' $DYNAMIC
1 $INCLUDE: 1GWDECL.INC 1
DEFINT A-Z
DECLARE SUB STOP.AND.CLEAR ()
DECLARE SUB CHECK.ERROR ()
DECLARE SUB SET.DMA.CONTROLLER (DMAMODE%, NC%)
DECLARE SUB SET.DMA.DT2818 (TICKS%, START.CHAN%, EMD.CHAN%)
DECLARE SUB WRITE.DA (DACHAN%, VOLTS!)
DECLARE SUB READ.AD (ADCHAN%, VAD!)
DECLARE SUB FFT CDECL (BYVAL 01, BYVAL SI, BYVAL 02, BYVAL S2,

BYVAL 03, BYVAL S3, BYVAL 04, BYVAL S4, BYVAL NN%)
DECLARE SUB MENU (A%)
DECLARE SUB PL0T1 (X!(), Yl!(), N%)
DECLARE SUB PLOT2 (Xl!(), Yl!(), Nl%, X2!(), Y2!(), N2%)
DECLARE SUB CURVE (X!(), Y!(), N%)
DECLARE SUB SMOOTH (M%, Z%, d!(), N%)
DECLARE SUB WRITE.BINARY (Filename$, DAT!(), TOTALS, TIMESTEP!)
DECLARE SUB GETKEY (A$)
REM Global values for the DMA chip. DMACHAN, DMACOM, BASEREG,
REM COUNTREG and PAGEREG are redefined in the Setup Module.
COMMON SHARED DMACHAN, DMACOM, BASEREG, COUNTREG, PAGEREG
CONST DMAMASK = SH5, DMAPAGE = SH4, SEG.VAL = SH4000
CONST MASKREG = SHA, MODEREG = SHB, BYTEREG = SHC
CONST DMABASEL = SHO, DMABASEH = SHO
REM Global values for the DT-2818 board. BASE.ADR, COM.REG,
REM STAT.REG and DATA.REG are redefined in the Setup Module.

145

www.manaraa.com

146

COMMON SHARED BASE.ADR, COM.REG, STAT.REG, DATA.REG
CONST COM.WAIT = &H4, WRITE.WAIT = &H2, READ.WAIT = &H5
CONST CSTOP = &HF, CCLEAR = &H1, CERROR = &H2, CCLOCK = &H3
CONST CRAD = &HE, CSAD = &HD, CDAOUT = &H8, CADIN = &HC
CONST FACTOR = 4096, RANGE =20, OFFSET = 10
CONST RES! = RANGE / FACTOR
REM Default values: BASE.ADR = &H2EC, DMACHAN = 1, NMAX = 4096
BASE.ADR = &H2EC: COM.REG = BASE.ADR + 1
STAT.REG = BASE.ADR + 1: DATA.REG = BASE.ADR
DMACHAN = &H1: DMACOM = &H45: BASEREG = &H2
COUNTREG = &H3: PAGEREG = &H83: NMAX = 4096
REM Detect screen type and display the main menu.
START:
TEST! = FRE(""): VIEW PRINT 1 TO 25
OUT &H70, &H14
IF (INP(&H71) AND &H20) = 0 THEN SC$ = "E" ELSE SC$ = "C"
CALL MENU(CX)
SELECT CASE CX
CASE 1
REDIM SCL!(3), TITLE$(3)
FOR I = 0 TO 3: SCL!(I) = 1: NEXT
K = 1: 1 = 0 : DV = 0: VOLTS! = 0: BASEFREQ = 25000
BASECOUNT = 25000: NCHAN =1: ZO = 0: Z1 = 0: Z2 = 0
Z3 = 0: T! = 0: NUM$ = SF = 0: ND2 = NMAX / 2: CHATMOD = 0
D4: CLS : VIEW PRINT 1 TO 25: LIM = 1: TW! = 0
TITLE$(0) = "CHANNEL 0": TITLE$(1) = "CHANNEL 1"
TITLES?(2) = "CHANNEL 2": TITLE$(3) = "CHANNEL 3"
PRINT "h
PRINT " DATA ACQUISITION MODULE "PRINT "I1 . , -t=J 11
PRINT
PRINT "Four channels are available starting with CHANNEL 0."
PRINT
PRINT "How many CHANNELS do you want to read? ("; NCHAN; ") ";
INPUT A$: IF A$ = "" THEN NCHAN = NCHAN ELSE NCHAN = VAL(A$)
IF NCHAN < 1 OR NCHAN > 4 THEN GOTO D9
PRINT
FOR I = 0 TO NCHAN - 1

PRINT "Enter the SCALE for "; TITLE$(I); ":
PRINT "("; SCL!(I); "units/volt) : INPUT "», A$
IF A$ = "" THEN SCL!(I) = SCL!(I) ELSE SCL!(I) = VAL(A$)
IF SCL!(I) = 0 THEN GOTO D9

NEXT

DATA ACQUISITION MODULE

www.manaraa.com

147
D4X:
IF SF = 0 OR SF > BASEFREQ / NCHAN THEN

SF = CINT(BASEFREQ / NCHAN)
END IF
IF CNT& = 0 OR CNT& > INT(BASECOUNT / NCHAN + .5) THEN

CNT& = INT(BASECOUNT / NCHAN + .5)
END IF
PRINT
PRINT "Enter the SAMPLING RATE: ("; SF; "Hz)
INPUT A$: IF A$ = "" THEN SF = SF ELSE SF = VAL(A$)
IF SF < 100 OR SF > CINT(BASEFREQ / NCHAN) THEN

IF CHATMOD = 1 THEN GOTO C9 ELSE GOTO D9
END IF
TICKS = 800000 / SF: DT! = 1 / SF
PRINT
PRINT "Enter the NUMBER OF SAMPLES per channel: ("; CNT&; ")
INPUT A$: IF A$ = "" THEN CNT& = CNT& ELSE CNT& = VAL(A$)
IF CNT& < 1000 OR CNT& > INT(BASECOUNT / NCHAN + .5) THEN

IF CHATMOD = 1 THEN GOTO C9 ELSE GOTO D9
END IF
NC = CNT& * NCHAN: NCM1 = NC - 1
PRINT
PRINT "The OBSERVATION TIME will be";
PRINT CLNG(NC * DT! / NCHAN * 10 A 3) / 10 A 3; "sec.";
PRINT " Continue? [*Y/N] "
CALL GETKEY(A$): IF A$ = "N" THEN GOTO D4X
REDIM TIME!(CNT&), DO!(CNT&)
IF NCHAN = 2 THEN REDIM Dl!(CNT&)
IF NCHAN = 3 THEN REDIM Dl!(CNT&), D2!(CNT&)
IF NCHAN = 4 THEN REDIM Dl!(CNT&), D2!(CNT&), D3!(CNT&)
REM Ask if an external trigger is used.
EXT.TRIG = 0
PRINT : PRINT "Wait for an EXTERNAL TRIGGER? [Y/*N] "
CALL GETKEY(A$): IF A$ = "Y" THEN EXT.TRIG = &H80: GOTO D6
D5: REM The Chatter Analysis Module comes here.
PRINT
PRINT "Press RETURN to begin or Q to quit: ": CALL GETKEY(A$)
IF A$ = "Q" THEN IF CHATMOD THEN GOTO C9 ELSE GOTO D9
REM Disable the system clock.
D6: OUT &H43, &H30: OUT &H40, &H0: OUT &H40, &H0
REM Stop and clear the DT-2818.
CALL STOP.AND.CLEAR
REM Set-up DMA controller chip.
CALL SET.DMA.CONTROLLER(DMACOM, NC)
REM Set up DT-2818 for DMA operation.

www.manaraa.com

CALL SET.DMA.DT2818(TICKS, 0, NCHAN - 1)
IF EXT.TRIG = 0 THEN

PRINT : PRINT "Working ... ";
ELSE

PRINT : PRINT "Waiting for trigger ... ";
END IF
REM Write READ A/D WITH DMA command.
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
WAIT STAT.REG, COM.WAIT
OUT COM.REG, CRAD + &H10 + EXT.TRIG
REM Check for ERROR.
CALL CHECK.ERROR
REM Enable the system clock.
OUT &H43, &H36: OUT &H40, &H0: OUT &H40, &H0
REM Extract A/D readings from memory & scale.
T! = 0: ZO = 1: Z1 = 1: Z2 = 1: Z3 = 1: PRINT "Processing ...
DEF SEG = SEG.VAL

FOR K = 0 TO NCM1
DV = PEEK(K * 2) + PEEK(K * 2 + 1) * 256
VOLTS! = RES! * DV - OFFSET
IF K MOD NCHAN = 0 THEN

TIME!(ZO) = T!: DO!(ZO) = VOLTS! * SCL!(0)
ZO = ZO + 1

END IF
IF K MOD NCHAN = 1 THEN

TIME!(Zl) = T!: D1!(Z1) = VOLTS! * SCL!(1)
Z1 = Z1 + 1

END IF
IF K MOD NCHAN = 2 THEN

TIME!(Z2) = T!: D2!(Z2) = VOLTS! * SCL!(2)
Z2 = Z2 + 1

END IF
IF K MOD NCHAN = 3 THEN

TIME!(Z3) = T!: D3!(Z3) = VOLTS! * SCL!(3)
Z3 = Z3 + 1

END IF
IF (K MOD NCHAN) = NCHAN - 1 THEN T! = T! + DT!

NEXT
DEF SEG
REM If data is for Chatter Analysis Module then go back there
IF CHATMOD THEN GOTO C5
REM Plot the TIME data only.
D8: GOSUB PX1
REM Calculate FFT's and plot TIME data and SPECTRUM.

www.manaraa.com

IF TD$ <> "Y" THEN GOSUB FX1
PRINT : PRINT "PLOT or FFT the DATA again? [Y/*N] "
CALL GETKEY(A$): IF A$ = "Y" THEN TW! = 0: GOTO D8
REM Save the TIME DATA to disk as BINARY file(s).
PRINT : PRINT "Save the TIME DATA as BINARY file(s)?
CALL GETKEY(A$): IF A$ = "N" THEN GOTO D9
PRINT : REDIM FILE$(4)
FOR I = 0 TO NCHAN - 1

PRINT "Enter the BINARY file name for "; TITLE$(I);
INPUT (RETURN to quit) ", FILE$(I)
IF FILE$(I) = "" THEN GOTO D9

NEXT
PRINT
CALL WRITE.BINARY(FILE$(0), DO!(), CNT&, DT!)
IF NCHAN = 2 THEN

CALL WRITE.BINARY(FILE$(1)
END IF
IF NCHAN = 3 THEN

CALL WRITE.BINARY(FILE$(1)
CALL WRITE.BINARY(FILE$(2)

END IF
IF NCHAN = 4 THEN

CALL WRITE.BINARY(FILE$(1)
CALL WRITE.BINARY(FILE$(2)
CALL WRITE.BINARY(FILE$(3)

END IF

[*Y/N]

Dl!(), CNT&, DT!)

Dl! ()
D2! ()

Dl! ()
D2!()
D3!()

CNT&,
CNT&,

CNT&,
CNT&,
CNT&,

DT!)
DT!)

DT!)
DT!)
DT!)

D9: ERASE TIME!, DO!, Dl!, D2!, D3!
PRINT : PRINT "Continue the DATA ACQUISITION module? [*Y/N] "
CALL GETKEY(A$): IF A$ = "N" THEN GOTO START ELSE GOTO D4
CASE 2
REDIM SCL!(1), TITLE$(1)
K = 1: I = 0: J = 0: LAST = 0: CURRENT = 0: DV = 0: LIMIT = 0
ADR = 0: CL& = 0: CH& =0: FW = 200: VOLTS! = 0: CNT = 0
ENDVAL = 0: DENOM! =0: ZO = 1: Z1 = 1: OFS! = 0: LIM = 1
OVLD = 0: TH! = .2: NAVG = 3: SCL!(0) = 1: SCL!(1) = 1
NC = 32000: NCM1 = NC - 1: SF = 10000
ND2 = NMAX / 2: NMAX2M1 = 2 * NMAX - 1
TITLE$(0) = "HAMMER": TITLE$(1) = "TRANSDUCER": NUM$ = ""
Tl: CLS : VIEW PRINT 1 TO 25: TW! = 0
PRINT "
PRINT "
PRINT "
REDIM DO!(NMAX), Dl!(NMAX), F!(ND2), RE!(ND2), IM!(ND2)
REDIM REO!(ND2), IM0!(ND2), MAGO!(ND2), REl!(ND2)
REDIM IM1!(ND2), MAGl!(ND2), REX!(ND2), IMX!(ND2)
PRINT
PRINT "Enter the SAMPLING FREQUENCY per channel (»; SF; "Hz)

TRANSFER FUNCTION MODULE

www.manaraa.com

150
INPUT A$: IF A$ = THEN SF = SF ELSE SF = VAL(A$)
IF SF <= 0 OR SF > 12000 THEN GOTO T9
TICKS = 800000 / SF: DT! = 1 / SF: DF! = 1 / (NMAX * DT!)
REM Construct Frequency range.
FOR I = 1 TO ND2: F!(I) = I * DF!: NEXT
PRINT
FOR I = 0 TO 1

PRINT "Enter the SCALE for "; TITLE$(I); ": ";
PRINT »(»; SCL!(I); "units/volt) : INPUT "", A$
IF A$ = "" THEN SCL!(I) = SCL!(I) ELSE SCL!(I) = VAL(A$)
IF SCL!(I) = 0 THEN GOTO T9

NEXT
PRINT : PRINT "Enter the TRIGGER THRESHOLD: ("? TH!; "volts)
INPUT A$: IF A$ = "" THEN TH! = TH! ELSE TH! “= VAL(A$)
PRINT : PRINT "Enter the NUMBER OF AVERAGES: ("; NAVG; ")
INPUT "", A$: IF A$ = "" THEN NAVG = NAVG ELSE NAVG = VAL(A$)
IF NAVG = 0 OR NAVG > 100 THEN GOTO T9
PRINT : PRINT "Press RETURN to begin or Q to quit: ";
CALL GETKEY(A$): IF A$ = "Q" THEN PRINT : GOTO T9
PRINT
REM Disable the Time-of-Day clock.
OUT &H43, &H30: OUT &H40, &H0: OUT &H40, &H0
REM Begin taking the Transfer Functions.
FOR I = 1 TO NAVG
REM Refer trigger threshold to DC offset of hammer charge amp.
T3 : CALL STOP.AND.CLEAR: CALL READ.AD(0, TEST!)

LIMIT = FACTOR / 2 + TH! / RES! + TEST! / RES!
CALL STOP.AND.CLEAR

REM Set-up DT-2818 for continuous DMA operation
CALL SET.DMA.DT2818(TICKS, 0, 1)

REM Set-up DMA controller for memory write, autoinitialize.
CALL SET.DMA.CONTROLLER(DMACOM + &H10, NC)

REM Write READ A/D WITH CONTINUOUS DMA command.
WAIT STAT.REG, COM.WAIT
OUT COM.REG, CRAD + &H30

REM Monitor DMA memory and look for the trigger on Channel 0.
SCREEN 0: CLS : LOCATE 12, 19
PRINT "Waiting for Trigger #"; I; "(ESC to Exit) ... ";
LAST = (DMABASEH * 256 + DMABASEL) \ 2

T5: IF INKEY$ = CHR$(27) THEN

www.manaraa.com

151
OUT &H43, &H36: OUT &H40, &H0: OUT &H40, &H0
CALL STOP.AND.CLEAR: GOTO T1

END IF
OUT MASKREG, DMAMASK: REM Set DMA channel 1 mask bit.
OUT BYTEREG, DMACHAN: REM Clear byte flipflop.
CLSt = INP(BASEREG) : CH& = INP(BASEREG)
OUT MASKREG, DMACHAN: REM Clear DMA channel 1 mask bit.
CURRENT = (CH& * 256 + CL&) \ 2
IF CURRENT > 0 THEN CURRENT = CURRENT - CURRENT MOD 2
DEF SEG = SEG.VAL

IF LAST < CURRENT THEN
FOR K = LAST TO CURRENT STEP 2

DV = PEEK(K * 2) + PEEK(K * 2 + 1) * 256
IF DV > LIMIT THEN

DEF SEG : GOTO T6: REM Trigger found!
END IF

NEXT
ELSE

FOR K = LAST TO NCM1 STEP 2
DV = PEEK(K * 2) + PEEK(K * 2 + 1) * 256
IF DV > LIMIT THEN

DEF SEG : GOTO T6: REM Trigger found!
END IF

NEXT
FOR K = 0 TO CURRENT STEP 2

DV = PEEK(K * 2) + PEEK(K * 2 + 1) * 256
IF DV > LIMIT THEN

DEF SEG : GOTO T6: REM Trigger found!
END IF

NEXT
END IF

DEF SEG
LAST = CURRENT: GOTO T5: REM Trigger not found.

REM Poll DMA controller to be sure that data is not overwritten.
REM Reject premature trigger.

T6: IF K < 4 OR CURRENT < 4 THEN GOTO T5
REM Pre-trigger by 3 data values to catch entire impulse.
IF K < 6 THEN K = NCM1 + K - 6 ELSE K = K - 6
IF K <= NCM1 - NMAX2M1 THEN

ENDVAL = K + NMAX2M1
ELSE

ENDVAL = NMAX2M1 - NCM1 + K
END IF
IF K <= NCM1 - NMAX2M1 THEN

ADR = K
DO WHILE ADR < ENDVAL

OUT MASKREG, DMAMASK: OUT BYTEREG, DMACHAN
CL& = INP(BASEREG): CH& = INP(BASEREG)
OUT MASKREG, DMACHAN
ADR = (CH& * 256 + CL&) \ 2

www.manaraa.com

LOOP
ELSE

ADR = K
DO WHILE ADR < NCM1

OUT MASKREG, DMAMASK: OUT BYTEREG, DMACHAN
CL& = INP(BASEREG): CH& = INP(BASEREG)
OUT MASKREG, DMACHAN
ADR = (CH& * 256 + CL&) \ 2

LOOP
ADR = 0
DO WHILE ADR < ENDVAL

OUT MASKREG, DMAMASK: OUT BYTEREG, DMACHAN
CL& = INP(BASEREG): CH& = INP(BASEREG)
OUT MASKREG, DMACHAN
ADR = (CH& * 256 + CL&) \ 2

LOOP
END IF

REM Stop the DMA process.
OUT COM.REG, CSTOP: BEEP

REM Check for DT-2818 error.
CALL CHECK.ERROR

REM Recover data from memory.
CLS : LOCATE 12, 26: PRINT "Processing (ESC to Hold) ...
CNT = 0: ZO = 1: Z1 = 1: OVLD = 0
DEF SEG = SEG.VAL

REM Set up square window for hammer impulse on channel
ADR = K + FW * 2
IF ADR > NCM1 THEN ADR = FW * 2 + K - NCM1
OFS! = PEEK(ADR * 2) + PEEK(ADR * 2 + 1) * 256
OFS! = (RES! * OFS! - OFFSET) * SCL!(0)
IF K < ENDVAL THEN

FOR J = K TO ENDVAL
DV = PEEK(J * 2) + PEEK(J * 2 + 1) * 256
IF (DV <= 2 OR DV >= 4094) AND OVLD = 0 THEN OVLD
VOLTS! = RES! * DV - OFFSET
IF CNT MOD 2 = 0 THEN

DO!(ZO) = VOLTS! * SCL!(0)
IF Z0 > FW THEN D0!(Z0) = OFS!: REM Apply window
Z0 = Z0 + 1

ELSE
Dl!(Zl) = VOLTS! * SCL!(1): Z1 = Z1 + 1

END IF
CNT = CNT + 1
IF Z0 > NMAX AND Zl > NMAX THEN EXIT FOR
IF INKEY$ = CHR$(27) THEN DEF SEG : GOTO T3

NEXT
ELSE

FOR J = K TO NCM1
DV = PEEK(J * 2) + PEEK(J * 2 + 1) * 256

www.manaraa.com

153
IF (DV <= 2 OR DV >= 4094) AND OVLD = 0 THEN OVLD = 1
VOLTS! = RES! * DV - OFFSET
IF CNT MOD 2 = 0 THEN

DO!(ZO) = VOLTS! * SCL! (0)
IF ZO > FW THEN D0!(Z0) = OFS!: REM Apply window.
ZO = ZO + 1

ELSE
Dl!(Zl) = VOLTS! * SCL! (1): Zl = Zl + 1

END IF
CNT = CNT + 1
IF INKEY$ = CHR$(27) THEN DEF SEG : GOTO T3

NEXT
FOR J = 0 TO ENDVAL

DV = PEEK(J * 2) + PEEK(J * 2 + 1) * 256
IF (DV <= 2 OR DV >= 4094) AND OVLD = 0 THEN OVLD = 1
VOLTS! = RES! * DV - OFFSET
IF CNT MOD 2 = 0 THEN

DO!(ZO) = VOLTS! * SCL!(0)
IF ZO > FW THEN D0!(Z0) = OFS!: REM Apply window.
ZO = ZO + 1

ELSE
Dl!(Zl) = VOLTS! * SCL!(1): Zl = Zl + 1

END IF
CNT = CNT + 1
IF ZO > NMAX AND Zl > NMAX THEN EXIT FOR
IF INKEY$ = CHR$(27) THEN DEF SEG : GOTO T3

NEXT
END IF

DEF SEG
IF OVLD THEN

OVLD = 0
CLS : LOCATE 12, 24
PRINT "OVERLOAD! Continue or Hold? [C/*H] "
CALL GETKEY(A$): IF A$ <> "C" THEN GOTO T3
CLS : LOCATE 12, 24
PRINT "Calculating Transfer Function ..."

END IF
REM Subtract DC offset & apply exponential window.

SUMO! = 0: SUM1! = 0
FOR J = 1 TO NMAX

SUMO! = SUMO! + D0!(J)
SUM1! = SUM1! + Dl!(J)
IF INKEY$ = CHR$(27) THEN GOTO T3

NEXT
AVGO! = SUMO! / NMAX
AVG1! = SUM1! / NMAX
TAU! = .1 * DT! * NMAX
FOR J = 1 TO NMAX

DO! (J) = (DO! (J) - AVGO!) * EXP(-J * DT! / TAU!)
Dl!(J) = (Dl!(J) - AVG1!) * EXP(-J * DT! / TAU!)

www.manaraa.com

154
IF INKEY$ = CHR$(27) THEN GOTO T3

NEXT
REM Calculate FFT of the impact and the response.
CLS : LOCATE 12, 24: PRINT "Calculating Transfer Function ..."
CALL FFT(VARPTR(DO!(0)), VARSEG(DO!(0)), VARPTR(RE0!(0)),

VARSEG(RE0!(0)), VARPTR(IM0!(0)), VARSEG(IM0!(0)),
VARPTR(MAG0!(0)), VARSEG(MAGO!(0)), NMAX)

CALL FFT(VARPTR(Dl!(0)), VARSEG(Dl!(0)), VARPTR(REl!(0)),
VARSEG(RE1!(0)), VARPTR(IMl! (0)) , VARSEG(IM1!(0)),
VARPTR(MAGI!(0)), VARSEG(MAGI!(0)), NMAX)

REM Create average Transfer Functions Re[Xl/X0] and Im[Xl/X0].
REM Use Cross and Auto spectrum for T.F. computation.

J = I - 1: IF 1 = 1 THEN J = 1
FOR K = 1 TO ND2

DENOM! = MAGO!(K) A 2: IF DENOM! = 0 THEN DENOM! = IE-10
REX!(K) = (RE0!(K) * REl!(K) + IM0!(K) * IMl!(K)) / DENOM!
RE! (K) = (J * RE! (K) + REX!(K)) / I
IMX!(K) = (REO!(K) * IMl!(K) - IM0!(K) * RE1!(K)) / DENOM!
IM! (K) = (J * IM! (K) + IMX! (K)) / I

NEXT
REM Plot the HAMMER magnitude and the IMAG average TF.

XL1$ = "FREQ (HZ)": YL1$ = "MAG HAMMER"
XL2$ = XL1$: YL2$ = "IMAG AVG TF"
TEST! = MAGO!(1): MAG0!(1) = 0
LIM = 0: CALL PLOT2(F!(), MAG0!(), ND2, F!(), IM!(), ND2)
MAGO!(1) = TEST!

REM If HOLD then subtract the present TF from the average TF.
LOCATE 1, 1
PRINT "Continue, Hold, Stop or Average? [*C/H/S/A] "
CALL GETKEY(A$): VIEW: CLS
IF A$ = "H" THEN

FOR K = 1 TO ND2
RE! (K) = (I * RE! (K) - REX! (K)) / J
IM!(K) = (I * IM!(K) - IMX!(K)) / J

NEXT
GOTO T3

END IF
IF A$ = "S" THEN
SCREEN 0: I = NAVG
OUT &H43, &H36: OUT &H40, &H0: OUT &H40, &H0
CALL STOP.AND.CLEAR: GOTO T1

END IF
IF A$ = "A" THEN I = NAVG: EXIT FOR

REM Continue with the next TF.
NEXT I

www.manaraa.com

REM Enable the Time-of-Day clock.
OUT &H43, &H36: OUT &H40, &H0: OUT &H40, &H0
REM Plot the REAL and IMAGINARY average Transfer Function.
XL1$ = "FREQ (HZ)": YL1$ = "REAL TF"
XL2$ = XL1$: YL2$ = "IMAG TF"
LIM = 1: CALL PL0T2(F!(), RE!(), ND2, F!(), IM!(), ND2)
SCREEN 0: CLS
REM Save the FREQUENCY, REAL and IMAGINARY TF to ASCII file.
PRINT : PRINT "Save the Transfer Function to disk? [Y/*N] »
CALL GETKEY(A$)
IF A$ = "Y" THEN

PRINT
INPUT "Enter the ASCII file name: ", FILE$
IF FILE$ = "» THEN GOTO T1
OPEN FILE$ FOR OUTPUT AS #1

PRINT : PRINT "Saving "; FILE$; " ..."
FOR I = 1 TO ND2

PRINT #1, USING "#.######AAAA F!(I); RE!(I); IM!(I)
NEXT

CLOSE #1
END IF
T9: ERASE DO!, Dl!, F!, RE!, IM!, REX!, IMX!

ERASE REO!, IMO!, MAGO!, RE1!, IMl!, MAGI!
PRINT .* PRINT "Continue the TRANSFER FUNCTION module? [*Y/N]
CALL GETKEY(A$): IF A$ = "N" THEN GOTO START ELSE GOTO T1
CASE 3
REDIM SCL!(1), TITLE$(1)
K = 1: 1 = 0 : DV = 0: VOLTS! =0: Z 0 = 0 : T! =0: TW! = 0
EXT.TRIG = 0: LIM = 1: SCL!(0) = 1: ACSPD! = 3600
NT = 4: THR = 15
SCL!(0) = 1: TITLE$(0) = "CHANNEL 0": NUM$ = ""
Cl: CLS : VIEW PRINT 1 TO 25
MAXTEMP = NMAX: NMAX = 8192: ND2 = NMAX / 2: SF = 2 * NMAX
NCHAN = 1: CNT& = NMAX: NC = CNT& * NCHAN: NCM1 = NC - 1
TICKS = 800000 / SF: DT! = 1 / SF
PRINT "
PRINT "
PRINT "
REDIM TIME!(CNT&), D0!(CNT&), DX!(CNT&)
REDIM F!(ND2), SRT!(ND2), FRQ!(ND2), MAG!(ND2), TEMP!(ND2)
PRINT
PRINT "Enter the NUMBER OF TEETH on the TOOL: ("; NT; ») ";
INPUT "", A$: IF A$ = "" THEN NT = NT ELSE NT = VAL(A$)
IF NT < 1 OR NT > 100 THEN GOTO Cl
PRINT
PRINT "Enter the ACTUAL SPINDLE SPEED: ("; ACSPD!; "RPM) ";
INPUT A$

CHATTER ANALYSIS MODULE

www.manaraa.com

IF A$ = "" THEN ACSPD! = ACSPD! ELSE ACSPD! = VAL(A$)
IF ACSPD! < 1 OR ACSPD! > 40000 THEN GOTO Cl
REM Construct Frequency range.
DF! = 1 / (NMAX * DT!)
FOR I = 1 TO ND2: F!(I) = I * DF!: NEXT
REM Determine search step for the spectrum.
FC! = 0: FT! = ACSPD! * NT / 60
FR! = ACSPD! / 60: MAX! = -1E+30
FD! = 3 * DF!
IF 2 * FD! > FR! THEN FD! = 2 * DF!
IF 2 * FD! > FR! THEN

BEEP: PRINT
PRINT "Spindle speed is TOO SLOW to resolve chatter!"
GOTO C9

END IF
PRINT
PRINT "Enter the THRESHOLD for chatter detection : (";
PRINT THR; "%) : INPUT "", A$
IF A$ = "" THEN THR = THR ELSE THR = VAL(A$)
IF THR <= 0 OR THR > 100 THEN GOTO Cl
PRINT
PRINT "The MAXIMUM FREQUENCY will be"; SF / 2; "Hz, »;
PRINT "with a RESOLUTION of"; SF / NMAX; "Hz."
PRINT
PRINT "Check that the MICROPHONE is on CHANNEL 0."
REM Use the Data Acquisition Module to get the data in DO!().
CHATMOD = 1: GOTO D5
REM The Data Acquisition Module returns here.
C5: CHATMOD = 0
REM Get ready to subtract DC offset from the data.
SUMO! = 0
FOR I = 1 TO NMAX

SUMO! = SUMO! + DO!(I)
NEXT
AVGO! = SUMO! / NMAX
REM Subtract DC offset and apply Hanning window.
FOR 1 = 1 TO NMAX

DX!(I) = (DO!(I) - AVGO!) * .5 * (1 - COS(6.283185 * (I - 1
(NMAX - 1)))

NEXT
REM Compute the FFT of the data.
PRINT
PRINT "Computing one"; NMAX; "point Fast Fourier Transform ..
CALL FFT(VARPTR(DX!(0)), VARSEG(DX!(0)), VARPTR(SRT!(0)),

www.manaraa.com

VARSEG(SRT!(0)), VARPTR(FRQ!(0)), VARSEG(FRQ!(0)),
VARPTR(MAG!(0)), VARSEG(MAG!(0)), NMAX)

PRINT : PRINT "Evaluating the spectrum ..."
FOR I = 1 TO ND2

TEMP!(I) = MAG!(I)
IF TEMP!(I) > MAX! THEN MAX! = TEMP!(I)

NEXT
MAX! = THR * MAX! / 100
REM Sort the spectrum and test for chatter.
FOR I = 1 TO ND2

K = 1
FOR J = 2 TO ND2

IF TEMP!(J) > TEMP!(K) THEN K = J
NEXT
SRT!(I) = TEMP!(K): IF SRT!(I) < MAX! THEN EXIT FOR
TEMP!(K) = 0
J = CINT(F!(K) / FR!): J = CINT(ND2 * (J * FR!) / F!(ND2))
IF F! (K) >= F! (J) - FD! AND F! (K) <= F! (J) + FD! THEN

FC! = 0
ELSE

FC! = F!(K): EXIT FOR
END IF

NEXT
REM Plot the spectrum.
XL1$ = "FREQ (Hz)"
YL1$ = " N =" + STR$(NT)
YL1$ = YL1$ + " SPEED =" + STR$(CLNG(ACSPD!))
YL1$ = YL1$ + " Ft =" + STR$(CLNG(FT!))
YL1$ = YL1$ + " FC =" + STR$(CLNG(FC!))
CALL PL0T1(F!(), MAG! () , ND2)
SCREEN 0
REM Save the TIME DATA to disk as a BINARY file.
PRINT : PRINT "Save the TIME DATA as a BINARY file? [Y/*N] "
CALL GETKEY(A$): IF A$ <> "Y" THEN GOTO C9
PRINT : REDIM FILE$(1)
PRINT "Enter the BINARY file name for "; TITLE$(0);
INPUT ": ", FILE$(0): IF FILE$(0) = "" THEN GOTO D9
PRINT : CALL WRITE.BINARY(FILE$(0), D0!(), CNT&, DT!)
C9: ERASE TIME!, DO!, DX!, F!, SRT!, FRQ!, MAG!, TEMP!

NMAX = MAXTEMP
PRINT : PRINT "Continue the CHATTER ANALYSIS module? [*Y/N] "
CALL GETKEY(A$): IF A$ = "N" THEN GOTO START ELSE GOTO Cl
CASE 4
DACHAN = 0: VOLTS! = 0
SI: CLS : VIEW PRINT 1 TO 23

www.manaraa.com

158
LOCATE 7, 21: PRINT
LOCATE 8, 21: PRINT
LOCATE 9, 21: PRINT
LOCATE 11, 22: PRINT
LOCATE 12, 22: PRINT
LOCATE 13, 22: PRINT
LOCATE 15, 22: PRINT

SYSTEM TEST MODULE

CALL GETKEY(A$): C = VAL(A$)
IF C < 1 OR C >= 3 THEN GOTO START

[1] READ VOLTAGES FROM A/D CHANNELS"
[2] WRITE VOLTAGE TO D/A CHANNEL"
[3] EXIT THE SYSTEM TEST MODULE"

Selection? [1-3] "

IF C = 2 THEN
CLS : LOCATE 11, 22
PRINT "Select D/A channel 0 or 1: (";
PRINT DACHAN; : INPUT ") ", A$
A! = VAL(A$): IF A! < 0 OR A! > 1 THEN GOTO SI
IF A$ <> "" THEN DACHAN = A!
LOCATE 13, 22
INPUT "Enter D/A voltage: (MAX +/" 10) ", VOLTS!
IF ABS(VOLTS!) > 10 THEN GOTO SI

END IF
CALL STOP.AND.CLEAR
IF C = 1 THEN LOCATE 17, 18 ELSE LOCATE 15, 18
PRINT "Press RETURN to stop— ready to begin? [*Y/N] "
CALL GETKEY(A$): IF A$ = "N" THEN GOTO SI
IF C = 2 THEN CALL WRITE.DA(DACHAN, VOLTS!)
CLS : LOCATE 25, 1
PRINT " A/D 0 (0) A/D 1 (2)";
PRINT " A/D 2 (4) A/D 3 (6)"
REM Data reading loop.
S7: CALL READ.AD(0, VO!): CALL READ.AD(1, VI!)

CALL READ.AD(2, V2!): CALL READ.AD(3, V3!)
PRINT USING »###########.###»; VO!; VI!; V2!; V3!
A$ = INKEY$: IF A$ = CHR$(13) OR A$ = CHR$(27) THEN GOTO S9
GOTO S7

S9: PRINT : PRINT " Continue? [*Y/N] "
CALL GETKEY(A$): IF A$ = "N" THEN GOTO SI
PRINT : PRINT : GOTO S7

CASE 5
REDIM TITLE$(1), SCL!(1)
I = 0: J = 0: LIM = 1: NUM$ = "": ND2
PI: CLS : VIEW PRINT 1 TO 25: TW! = 0

= NMAX / 2: SCL!(0) = 1

DATA PROCESSING MODULE
PRINT "
PRINT "
PRINT "
PRINT
PRINT "Plot a TRANSFER FUNCTION file? [Y/*N] "
IF FQ$ = "Y" THEN

PRINT
CALL GETKEY(FQ$)

www.manaraa.com

159
INPUT "Enter the TF file name (RETURN to exit): ",
IF FILE$ = "" THEN GOTO P9
PRINT : PRINT "Reading FILE$; " ..."
OPEN FILE$ FOR INPUT AS #1

CNT& = 0
DO WHILE NOT EOF(l)

CNT& = CNT& + 1: LINE INPUT #1, A$
LOOP

CLOSE #1
REDIM F!(CNT&), RE!(CNT&), IM!(CNT&)OPEN FILE$ FOR INPUT AS #1

1 = 0
DO WHILE NOT EOF(l)

1 = 1 + 1 : INPUT #1, F!(I), RE!(I), IM!(I)
LOOP

CLOSE #1
DF! = ABS(F!(4) - F!(3))
XL1$ = "FREQ (HZ)": YL1$ = "REAL TF"
XL2$ = XL1$: YL2$ = "IMAG TF"
LIM = 1: CALL PLOT2(F!(), RE!(), I, F!(), IM!(), I
SCREEN 0: CLS : GOTO P9

END IF
NCHAN = 1: PRINT
PRINT "Process an ASCII or BINARY data file? [A/*B]
CALL GETKEY(P$): IF P$ <> "A" THEN P$ = "B"
IF P$ = "A" THEN

PRINT
INPUT "Enter the ASCII file name (RETURN to Exit):
IF TITLE$(0) = "» THEN GOTO P9
PRINT : PRINT "Reading TITLE$(0); " ..."
OPEN TITLE$(0) FOR INPUT AS #1

CNT& = 0
DO WHILE NOT E0F(1)

CNT& = CNT& + 1: LINE INPUT #1, A$
LOOP

CLOSE #1
REDIM TIME!(CNT&), D0!(CNT&)
OPEN TITLE$(0) FOR INPUT AS #1

1 = 0
DO WHILE NOT EOF(l)

1 = 1 + 1 : INPUT #1, TIME!(I), DO!(I)
LOOP

CLOSE #1
DT! = ABS(TIME!(4) - TIME!(3)): TW! = TIME!(1)

END IF
IF P$ = "B" THEN

PRINT : TD$ = "Y"
INPUT "Enter the BINARY file name (RETURN to Exit)

TITLE$(0)

FILES

", TITLES(0)

ii/

www.manaraa.com

160
IF TITLES(0) = "" THEN GOTO P9
PRINT : PRINT "Reading "; TITLES(0); " ..."
OPEN TITLES(0) FOR BINARY ACCESS READ AS #1

GET #1, , CNT&: GET #1, , DT!
REDIM TIME!(CNT&), DO!(CNT&)
FOR I = 1 TO CNT&

TIME! (I) = (I - 1) * DT!
GET #1, , DO!(I)

NEXT
CLOSE #1
IF CNT& = 0 OR DT! = 0 THEN BEEP: KILL TITLES(0): GOTO P9

END IF
REM Plot the TIME data only.
P3: GOSUB PX1
REM Calculate FFT1s and plot TIME data and SPECTRUM.
IF TD$ <> "Y" THEN GOSUB FX1
PRINT
PRINT "Do you want to PLOT or FFT the DATA again? [Y/*N] »
CALL GETKEY(AS)
IF A$ = "Y" THEN

IF P$ = "B" THEN TW! = 0
GOTO P3

END IF
REM Save TIME WINDOW DATA to an ASCII file.
IF P$ = "B" THEN

PRINT : PRINT "Save TIME WINDOW DATA to an ASCII file? [Y/*N] "
CALL GETKEY(A$): IF A$ <> "Y" THEN GOTO P9
IF CNT& < NMAX THEN NS = 1: ND = CNT&: GOTO P5
ET! = INT(((CNT& * DT!) - NMAX * DT!) * 10 A 2) / 10 * 2
PRINT : PRINT "Select the START of the TIME WINDOW: ";
PRINT "(*0 to"; ET!; : PRINT "sec) »; : INPUT »", TW!
IF TW! < 0 OR TW! > ET! THEN TW! = 0
IF TW! = 0 THEN TW! = DT!
NS = CINT(TW! / DT!): ND = NS + NMAX - 1

P5: PRINT
PRINT "Enter the ASCII file name for "; TITLES(0);
INPUT ": ", FILES: IF FILES = "" THEN GOTO P9
PRINT : PRINT "Writing "; FILES; " ..."
OPEN FILES FOR OUTPUT AS #1

FOR I = 1 TO CNT&
IF I >= NS AND I <= ND THEN

PRINT #1, USING "#.######AAAA "; TIME!(I); DO!(I)
END IF

NEXT
CLOSE #1

END IF
P9: CNT& = 0: ERASE TIME!, DO!, F!, RE!, IM!

www.manaraa.com

161
PRINT : PRINT "Continue the DATA PROCESSING module? [*Y/N]
CALL GETKEY(A$): IF A$ = "N" THEN GOTO START ELSE GOTO PI
CASE 6
Ml: CLS : VIEW PRINT 1 TO 25PRINT »|| ' ',',■:===_== • m
PRINT " PCDATA SETUP MODULE "PRINT" ^ ■.....■ ■■ - ■.. 1 ■■■■■,■■« 'I ii
PRINT
PRINT "PcData requires an 80286 computer with CGA or EGA"
PRINT "graphics, a math coprocessor, and a DT-2818 data"
PRINT "acquisition board at the base address &H2EC configured to"
PRINT "+/- 10 volts. DMA channel 1 is used, with the data stored"
PRINT "in memory page 4. The printer port is assumed to be LPT1."
PRINT : PRINT
PRINT "Enter the hex BASE ADDRESS for the DT-2818: (&H";
PRINT HEX$(BASE.ADR); ") "; : INPUT "", A$
IF A$ = »" THEN BASE.ADR = BASE.ADR ELSE BASE.ADR = VAL(A$)
DATA.REG = BASE.ADR
COM.REG = BASE.ADR + 1: STAT.REG = BASE.ADR + 1
PRINT
PRINT "Select DMA CHANNEL 1 or DMA CHANNEL 3: (";
PRINT DMACHAN; ") "? : INPUT »", A$
IF A$ = "" THEN DMACHAN = DMACHAN ELSE DMACHAN = VAL(A$)
IF DMACHAN <> 1 AND DMACHAN <> 3 THEN BEEP: GOTO M9
IF DMACHAN = 1 THEN

DMACHAN = &H1: DMACOM = &H45
BASEREG = &H2: COUNTREG = &H3: PAGEREG = &H83

END IF
IF DMACHAN = 3 THEN

DMACHAN = &H3: DMACOM = &H47
BASEREG = &H6: COUNTREG = &H7: PAGEREG = &H82

END IF
PRINT
PRINT "Enter the SIZE for the Fast Fourier Transforms: (";
PRINT NMAX; ") "; : INPUT "», A$
IF A$ = "» THEN NMAX = NMAX ELSE NMAX = VAL(A$)
IF NMAX <> 1024 AND NMAX <> 2048 AND NMAX <> 4096
AND NMAX <> 8192 THEN
NMAX = 4096: BEEP: GOTO M9

END IF
M9: PRINT : PRINT "Continue the PCDATA SETUP module? [Y/*N] ";

CALL GETKEY(A$): IF A$ = »Y" THEN GOTO Ml ELSE GOTO START
CASE 7
REM Terminate the program.
CLS : END

: VIEW PRINT 1 TO 25
PCDATA SETUP MODULE

END SELECT

www.manaraa.com

162

CALL PLOT1 (TIME! () , Dl!(), NN)

CALL PLOT1(TIME!(), Dl! () , NN)
CALL PLOT1(TIME!(), D2! () , NN)

CALL PLOT1(TIME!(), Dl! () , NN)
CALL PLOT1(TIME!(), D2! () , NN)
CALL PLOT1(TIME!(), D3! () , NN)

REM ************* PLOT TIME DATA ONLY SUBROUTINE ***************
PX1:
PRINT : PRINT "Plot the TIME DATA only? [Y/*N] »
TD$ = CALL GETKEY(TD$): IF TD$ <> »Y" THEN GOTO PX9
NN = CNT&: XL1$ = "TIME (sec)"
YL1$ = TITLE$(0): CALL PLOT1(TIME!(), D0l(), NN)
IF NCHAN = 2 THEN

YL1$ = TITLE$(1)
END IF
IF NCHAN = 3 THEN

YL1$ = TITLE$(1)
YL1$ = TITLE$(2)

END IF
IF NCHAN = 4 THEN
YL1$ = TITLE$(1)
YL1$ = TITLE$(2)
YL1$ = TITLE$(3)

END IF
SCREEN 0: CLS
PX9: RETURN
REM ***** COMPUTE FFT & PLOT DATA AND SPECTRUM SUBROUTINE ******
FX1:
IF CNT& < NMAX THEN GOTO FX9
Sl$ = S2$ = "": IF NCHAN > 1 THEN Sl$ = "S": S2$ = "s"
PRINT : PRINT "Compute FAST FOURIER TRANSFORM"; Sl$;
PRINT " Of the DATA? [*Y/N] "
CALL GETKEY(A$): IF A$ = "N" THEN GOTO FX9
REDIM T!(NMAX), X0!(NMAX), TEMP!(NMAX): NUM$ = "one"
IF NCHAN = 2 THEN REDIM XI!(NMAX): NUM$ = "two"
IF NCHAN = 3 THEN REDIM XI!(NMAX), X2!(NMAX): NUM$ = "three"
IF NCHAN = 4 THEN
REDIM XI!(NMAX), X2!(NMAX), X3!(NMAX): NUM$ = "four"

END IF
ET! = INT(((CNT& * DT!) - NMAX * DT!) * 10 * 2) / 10 A 2
PRINT
PRINT "TIME STEP:"; CINT(DT! * 10 A 6) / 10 A 6; "sec."
PRINT "TIME WINDOW for"; NMAX; "point FFT:";
PRINT CINT((NMAX * DT!) * 10 A 2) / 10 A 2; "sec."
IF CNT& = NMAX THEN NS = 1: ND = NMAX: GOTO FX3
PRINT : PRINT "Select the START of the TIME WINDOW: »;
PRINT "(*0 to"; ET!; : PRINT "sec) "; : INPUT TW!
IF TW! < 0 OR TW! > ET! THEN TW! = 0
IF TW! = 0 THEN TW! = DT!
PRINT : NS = CINT(TW! / DT!): ND = NS + NMAX - 1: NN = 0
REM Apply the TIME WINDOW to the DATA.
FX3: J = 0
FOR I = 1 TO CNT&

IF I >= NS AND I <= ND THEN

www.manaraa.com

163
J = J + 1: T!(J) = TIME!(I): XO!(J) = DO!(I)
IF NCHAN = 2 THEN

XI!(J) = Dl!(I)
END IF
IF NCHAN = 3 THEN

XI!(J) = Dl!(I) : X2! (J) = D2!(I)
END IF
IF NCHAN = 4 THEN

XI!(J) = Dl!(I): X2!(J) = D2!(I): X3!(J) = D3!(I)
END IF

END IF
NEXT
DF! = 1 / (J * DT!): IF J <> NMAX THEN BEEP: GOTO START
REDIM F!(ND2), RE!(ND2), IM!(ND2)
REDIM MAGO!(ND2), MAGI!(ND2), MAG2!(ND2), MAG3!(ND2)
REM Compute frequency range.
FOR I = 1 TO ND2: F!(I) = I * DF!: NEXT
PRINT "FREQUENCY RESOLUTION:"; CINT(DF! * 10 A 2) / 10 A 2; "Hz."
PRINT "FREQUENCY LIMIT:"; CINT(1 / (DT! * 2)); "Hz."
REM Compute the Fast Fourier Transform(s).
PRINT : PRINT "Computing "; NUM$; J;
PRINT "point Fast Fourier Transform"; S2$; " ...";
FOR I = 1 TO J: TEMP!(I) = X0!(I): NEXT
CALL FFT(VARPTR(TEMP!(0)), VARSEG(TEMP!(0)), VARPTR(RE!(0)),

VARSEG(RE!(0)), VARPTR(IM!(0)), VARSEG(IM!(0)),
VARPTR(MAGO!(0)), VARSEG(MAGO!(0)), J)

IF NCHAN = 2 THEN
FOR I = 1 TO J: TEMP!(I) = XI!(I): NEXT
CALL FFT(VARPTR(TEMP!(0)), VARSEG(TEMP!(0)), VARPTR(RE!(0)),

VARSEG(RE!(0)), VARPTR(IM!(0)), VARSEG(IM!(0)),
VARPTR(MAGI!(0)), VARSEG(MAGI!(0)), J)

END IF
IF NCHAN = 3 THEN

FOR I = 1 TO J: TEMP!(I) = XI!(I): NEXT
CALL FFT(VARPTR(TEMP!(0)), VARSEG(TEMP!(0)), VARPTR(RE!(0)),

VARSEG(RE!(0)), VARPTR(IM!(0)), VARSEG(IM!(0)),
VARPTR(MAGI!(0)), VARSEG(MAGI!(0)), J)

FOR I = 1 TO J: TEMP!(I) = X2!(I): NEXT
CALL FFT(VARPTR(TEMP!(0)), VARSEG(TEMP!(0)), VARPTR(RE!(0)),

VARSEG(RE!(0)), VARPTR(IM!(0)), VARSEG(IM!(0)),
VARPTR(MAG2!(0)), VARSEG(MAG2!(0)), J)

END IF
IF NCHAN = 4 THEN

FOR I = 1 TO J: TEMP!(I) = XI!(I): NEXT
CALL FFT(VARPTR(TEMP!(0)), VARSEG(TEMP!(0)), VARPTR(RE!(0)),

VARSEG(RE!(0)), VARPTR(IM!(0)), VARSEG(IM!(0)),
VARPTR(MAGI!(0)), VARSEG(MAGI!(0)), J)

FOR I = 1 TO J: TEMP!(I) = X2!(I): NEXT
CALL FFT(VARPTR(TEMP!(0)), VARSEG(TEMP!(0)), VARPTR(RE!(0)),

www.manaraa.com

164
VARSEG(RE!(0)), VARPTR(IM!(0)), VARSEG(IM!(0)) ,
VARPTR(MAG2!(0)) , VARSEG(MAG2!(0)), J)

FOR I = 1 TO J: TEMP!(I) = X3!(I): NEXT
CALL FFT(VARPTR(TEMP!(0)) , VARSEG(TEMP!(0)), VARPTR(RE! (0)),

VARSEG (RE! (0)) , VARPTR (IM!(())), VARSEG (IM! (0)) ,
VARPTR(MAG3!(0)), VARSEG(MAG3!(0)), J)

END IF
ERASE TEMP!, RE!, IM!
REM Plot the TIME DATA and SPECTRUM for each channel.
XL1$ = "TIME (sec)": XL2$ = "FREQ (Hz)"
YL1$ = TITLE$(0): YL2$ = TITLE$(0) + "-SPECTRUM"
CALL PLOT2(T!(), X0!(), J, F!(), MAG0!(), ND2)
ERASE X0!, MAGO!
IF NCHAN = 2 THEN

YL1$ = TITLE$(1): YL2$ = TITLE$(1) + "-SPECTRUM"
CALL PLOT2(T !(), Xl!(), J, F!(), MAGl!(), ND2)
ERASE XI!, MAGI!

END IF
IF NCHAN = 3 THEN

YL1$ = TITLE$(1): YL2$ = TITLE$(1) + "-SPECTRUM"
CALL PLOT2(T! () , Xl!(), J, F!(), MAG1!(), ND2)
YL1$ = TITLE$(2): YL2$ = TITLE$(2) + "-SPECTRUM"
CALL PLOT2(T!(), X2!(), J, F!(), MAG2!(), ND2)
ERASE XI!, MAGI!, X2!, MAG2!

END IF
IF NCHAN = 4 THEN

YL1$ = TITLE$(1): YL2$ = TITLE$(1) + "-SPECTRUM"
CALL PLOT2(T!(), Xl!(), J, F!(), MAG1!(), ND2)
YL1$ = TITLE$(2): YL2$ = TITLE$(2) + "-SPECTRUM"
CALL PLOT2(T !(), X2!(), J, F!(), MAG2!(), ND2)
YL1$ = TITLE$(3): YL2$ = TITLE$(3) + "-SPECTRUM"
CALL PLOT2(T!(), X3!(), J, F!(), MAG3!(), ND2)
ERASE XI!, MAGI!, X2!, MAG2!, X3!, MAG3!

END IF
ERASE T!, F!: SCREEN 0: CLS
FX9: RETURN

REM ************* CHECK DT-2818 ERROR SUBROUTINE ***************
SUB CHECK.ERROR

WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
WAIT STAT.REG, COM.WAIT
Status = INP(STAT.REG)
IF (Status AND &H80) THEN

BEEP
PRINT : PRINT "*** DT-2818 ERROR! ***": PRINT
END

END IF
END SUB

www.manaraa.com

165
REM *************** CURVE PLOTTING SUBROUTINE ******************
SUB CURVE (X!(), Y!(), NP) STATIC

SHARED XM!, XL!, YM!, YL!, XD, YD, YPL, YB, YE, CUH
SHARED SC$, XL1$, YL1$, XL2$, YL2$, XLABEL$, YLABEL$
SHARED OOPS, REDRAW, PLOTCOUNT, LIM, PLOTONE, PLOTTWO
IF REDRAW THEN GOTO CONTINUE

REM Find the plot limits (X axis values must be ascending).
XL! = X!(1): XM! = X!(NP): YL! = 1E+30: YM! = -1E+30
FOR I = 1 TO NP

IF Y!(I) > YM! THEN YM!
IF Y!(I) < YL!

NEXT
XD = 5: YD = 4

Y! (I)
THEN YL! = Y!(I)

CONTINUE:
CONST XB = 70, XE = 600, XPL = XE - XB
XR! = ABS(XM! - XL!): IF XR! = 0 THEN XR!
TESTX! = XR! / XD: XFAC! = XPL / XR!
XF$ = "##.#AAAA": XCF$ = »##.##AAAA»
YR! = ABS(YM! - YL!): IF YR! = 0 THEN YR!
TESTY! = YR! / YD: YFAC! = YPL / YR!
YF$ = "##.#AAAA": YCF$ = "##.##AAAA»

= 1

= 1

REM Find the format for the axis divisions..0001 THEN XF$ = »###.####»; XCF$ = ••###.######'•
.0001 THEN YF$ = ••###.####": YCF$ = '•###.######'•
.001 THEN XF$ = "### .###": XCF$ = »###.#####»
.001 THEN YF$ = "###.###": YCF$ = ••###.#####"
.01 THEN XF$ = "###.##": XCF$ = •'###.####'•
.01 THEN YF$ = "###.##«': YCF$ = »###.####»
1 THEN XF$ = "###.#": XCF$ = "###.###••
1 THEN YF$ = "###.#": YCF$ = "###.###»
10 THEN XF$ = "####": XCF$ = »####.##"

►= 10 THEN YF$ = "####": YCF$ = »####.##»
100 THEN XF$ = "#####": XCF$ = »#####.##••
100 THEN YF$ = "#####": YCF$ = »#####.##»
1000 THEN XF$ = »######": XCF$ = "######.##»
1000 THEN YF$ = ••######": YCF$ = ••######.##»
10000 THEN XF$ = "##.#AAAA": XCF$ = "##.##AAAA"
10000 THEN YF$ = "##.#AAAA": YCF$ = »##.##AAAA"

REM Set the screen type and set up the plotting area.
IF SC$ = "E" THEN

SCREEN 9
VIEW SCREEN (0, YB - CUH)-(639, YE + (349 - YE)): CLS

ELSE
SCREEN 2
VIEW SCREEN (0, YB - CUH)-(639, YE + (199 - YE)): CLS

END IF

IF TESTX >=
IF TESTY >=
IF TESTX >=
IF TESTY >-
IF TESTX >=
IF TESTY >=
IF TESTX >=
IF TESTY >=
IF TESTX >=
IF TESTY >=
IF TESTX >=
IF TESTY >=
IF TESTX >=
IF TESTY >=
IF TESTX >=
IF TESTY >=

www.manaraa.com

166
REM Draw the border.

LINE (XB, YE)- (XE, YB), , B
REM Draw X axis divisions.

FOR I = 0 TO XD
LINE (XB + I * XPL / XD, YB)-(XB + I * XPL / XD, YE)

, , , &HCCCC
LOCATE YE / CUH + 1.5, INT((XB + I * XPL / XD) / 8) - 2
PRINT USING XF$; XL! + XR! / XD * I * SGN(XM! - XL!);

NEXT
LOCATE YE / CUH + 2.5, 39: PRINT XLABEL$;

REM Draw Y axis divisions.
FOR I = 0 TO YD

LINE (XB, YE - I * YPL / YD)-(XE, YE - I * YPL / YD)
, , , &HCCCC

LOCATE INT((YE - I * YPL / YD) / CUH) + 1, 8 / LEN(YF$)
PRINT USING YF$; YL! + YR! / YD * I * SGN(YM! - YL!)

NEXT
LOCATE YB / CUH, XE / 8 - LEN(YLABEL$): PRINT YLABEL$

REM Plot the curve.
FOR I = 1 TO NP

IF X!(I) >= XL! THEN NL = I: EXIT FOR
NEXT
IF NL > 1 THEN NL = NL - 1
VIEW SCREEN (XB, YB)-(XE, YE)
FOR I = NL TO NP

IF INKEY$ = CHR$(27) THEN EXIT FOR
XP! = XB + (X!(I) - XL!) * XFAC!
YP! = YE - (Y!(I) - YL!) * YFAC!
IF I > NL AND ABS(YP!) < 351 AND ABS(XP!) < 641 THEN

LINE (XP!, YP!)-(XP1!, YPl!)
END IF
XP1! = XP!: YPl! = YP!
IF X!(I) > XM! THEN EXIT FOR

NEXT
TOP = 1 - 1

REM Present the Plotting Options.
AO:

IF LIM = 0 THEN EXIT SUB
VIEW: U = YB / CUH: W = 1: REDRAW = 0: OOPS = 0: HELP = 1
LOCATE 25, 1: PRINT " F1=LIMITS F2=LABEL F3=REPLOT F4=";
PRINT "SINGLE F5=CURSOR F6=MATH F7=PRINT ESC=CONTINUE

Al:
AN$ = INKEY$: IF AN$ = "" THEN GOTO Al

REM Press ESCAPE to quit the plot.
IF AN$ = CHR$(&H1B) THEN

www.manaraa.com

167
LOCATE U, W: PRINT " "
VIEW: OOPS = 0: REDRAW = 0: EXIT SUB

END IF
REM Press RETURN to toggle the help line.

IF AN$ = CHR$(&HD) THEN
IF HELP = 1 THEN

LOCATE 25, 1: PRINT STRING$(80, " ") ;
HELP = 0: GOTO Al

END IF
IF HELP = 0 THEN

LOCATE 25, 1: PRINT " F1=LIMITS F2=LABEL F3=REPLOT F4=";
PRINT "SINGLE F5=CURSOR F6=MATH F7=PRINT ESC=CONTINUE
HELP = 1: GOTO Al

END IF
END IF

REM Press FI key to change plot limits.
IF MID$(AN$, 2, 1) = THEN

LOCATE 25, 1: PRINT STRING$(80, " ") ;
LOCATE 25, 1: PRINT " ";
PRINT "Press RETURN to keep the current value";

A2: U = YB / CUH: W = 1
LOCATE U, W: PRINT STRING$(79, " ")
LOCATE U, W: INPUT "XLOW = ", A$
A! = VAL(A$): IF A$ <> »» THEN XL! = A!
LOCATE U, W: PRINT STRING$(79, " ")
LOCATE U, W: INPUT "XMAX = ", A$
A! = VAL(A$): IF A$ <> "" THEN XM! = A!
IF XM! <= XL! THEN BEEP: GOTO A2
LOCATE U, W: PRINT STRING$(79, " ")
LOCATE U, W: INPUT "XDIV = ", A$
A! = VAL(A$): IF A$ <> "" THEN XD = A!

A3: LOCATE U, W: PRINT STRING$(79, " ")
LOCATE U, W: INPUT "YLOW = ", A$
A! = VAL(A$): IF A$ <> "" THEN YL! = A!
LOCATE U, W: PRINT STRING$(79, " ")
LOCATE U, W: INPUT "YMAX = ", A$
A! = VAL(A$): IF A$ <> "" THEN YM! = A!
IF YM! <= YL! THEN BEEP: GOTO A3
LOCATE U, W: PRINT STRING$(79, " ")
LOCATE U, W: INPUT "YDIV = ", A$
A! = VAL(A$): IF A$ <> "" THEN YD = A!
IF XD <= 0 OR XD > 10 THEN XD = 1
IF YD <= 0 OR YD > 10 THEN YD = 1
REDRAW = 1: EXIT SUB

END IF
REM Press F2 key to label the plot.

IF MID$(AN$, 2 , 1) = "<" THEN
LOCATE 25, 1: PRINT " ";
PRINT "ARROW KEYS = ";

www.manaraa.com

168
PRINT "Position the Cursor ";
REDIM CSR(8 * CUH): LOCATE 2, 78: PRINT
GET (616, CUH)-(624, 2 * CUH), CSR: LOCATE 2, 78: PRINT "
U = YB / CUH: W = 1: LOCATE U, W: PRINT
W = XB / 8 + 1
PUT ((W - 1) * 8, (U
A$

ii ii

i i i i

- 1) * CUH), CSR
"" THEN GOTO A5A5: A$ = INKEY$: IF A$ =

IF A$ = CHR$(13) THEN GOTO A5
IF A$ = CHR$(9) THEN GOTO A5
IF MID$(A$, 2 , 1) = "?" THEN GOTO A5
IF MID$(A$, 2, 1) = "<" THEN GOTO A5
IF MID$(A$, 2, 1) = ">" THEN GOTO A5
REM ESC to mask the cursor and stop labeling.
IF A$ = CHR$(&H1B) THEN

PUT ((W - 1) * 8, (U - 1) * CUH), CSR
GOTO AO

END IF
IF A$ = CHR$(8) THEN
REM BACKSPACE key.
A$ = " ": PUT ((W - 1) * 8, (U - 1) * CUH), CSR
W = W - 1
IF W < 1 AND U = 1 THEN W = 1
IF W < 1 AND U <> 1 THEN W = 79:
LOCATE U, W: PRINT A$;
PUT ((W - 1) * 8, (U - 1)
GOTO A5

END IF
REM Extended ARROW keys.
IF MID$(A$, 2 , 1) = "H» THEN
REM UP arrow.
PUT ((W - 1) * 8,
U = U - 1: IF U <

- 1) * 8,

U = U - 1
* CUH), CSR

(U - 1) * CUH), CSR
1 THEN U = 24
(U - 1) * CUH), CSRPUT ((W

GOTO A5
END IF
IF MID$(A$, 2 , 1) = "K" THEN
REM LEFT arrow.
PUT ((W - 1) * 8,
W = W - 1
IF W < 1 AND U
IF W < 1 AND U <>
PUT ((W - 1) * 8,
GOTO A5

END IF
IF MID$(A$,
REM RIGHT arrow.
PUT ((W - 1) * 8,
W = W + 1
IF W > 79 AND U = 24 THEN W = 79
IF W > 79 AND U <> 24 THEN W = 1:
PUT ((W - 1) * 8, (U - 1) * CUH),
GOTO A5

(U - 1) * CUH), CSR
1 THEN W = 1
1 THEN W = 79: U = U - 1
(U - 1) * CUH), CSR

2, 1) = "M" THEN
(U - 1) * CUH), CSR

U = U
CSR

+ 1

www.manaraa.com

END IF
IF MID$(A$, 2 , 1) = "P" THEN
REM DOWN arrow.
PUT ((W - 1) * 8, (U - 1) * CUH), CSR
U = U + is IF U > 24 THEN U = 1
PUT ((W - 1) * 8, (U - 1) * CUH), CSR
GOTO A5

END IF
IF MID$(A$, 2 , 1) = "R" OR MID$(A$, 2, 1) = "S" THEN
REM INSERT and DELETE keys not used.
GOTO A5

END IF
IF MID$(A$, 2 , 1) = "I" THEN
REM PAGE UP
A$ = PUT ((W - 1) * 8, (U - 1) * CUH), CSR
U = 1: PUT ((W - 1) * 8, (U - 1) * CUH), CSR
GOTO A5

END IF
IF MID$(A$, 2, 1) = "Q" THEN
REM PAGE DOWN
A$ = PUT ((W - 1) * 8, (U - 1) * CUH), CSR
U = 24: PUT ((W - 1) * 8, (U - 1) * CUH), CSR
GOTO A5

END IF
IF MID$(A$, 2, 1) = "G" THEN
REM HOME
A$ = PUT ((W - 1) * 8, (U - 1) * CUH), CSR
U = l: W = 1: PUT ((W - 1) * 8, (U - 1) * CUH), CSR
GOTO A5

END IF
IF MID$(A$, 2, 1) = "0" THEN
REM END
A$ = PUT ((W - 1) * 8, (U - 1) * CUH), CSR
U = 24: W = 78

END IF
REM Move the cursor.
LOCATE U, W: W = W + 1: IF W > 79 THEN W = 1: U = U +
IF U > 24 THEN U = 24
PUT ((W - 1) * 8, (U - 1) * CUH), CSR
PRINT A$; : GOTO A5: REM Print the label character.

END IF
REM Press F3 key to replot.

IF MID$(AN$, 2 , 1) = "=" THEN
OOPS = 1: REDRAW = 0: EXIT SUB

END IF
REM Press F4 key to plot on single screen.

IF MID$(AN$, 2 , 1) = ">" AND PLOTTWO THEN
OOPS = 0: REDRAW = 0
TEMPX$ = XL1$: TEMPY$ = YL1$
IF PLOTCOUNT = 1 THEN XL1$ = XLABEL$: YL1$ = YLABEL$

www.manaraa.com

IF PLOTCOUNT = 2 THEN XL1$ = XL2$: YL1$ = YL2$
CALL PLOTl(X!(), Y!(), NP)
PLOTONE = 0: PLOTTWO = 1: OOPS = 1: REDRAW = 0
XL1$ = TEMPX$: YL1$ = TEMPY$
EXIT SUB

END IF
REM Press F5 key for the data value cursor.

IF MID$(AN$, 2 , 1) = "?" THEN
LOCATE 25, 1
PRINT " ";
PRINT "CTRL ARROW KEYS = Fast Cursor ";
REDIM CLN(24 * CUH): LOCATE 2, 78: PRINT
LOCATE 3, 78: PRINT "|": LOCATE 4, 78: PRINT "|"
GET (616, CUH)-(624, 4 * CUH), CLN: LOCATE 2, 78: PRINT
LOCATE 3, 78: PRINT " ": LOCATE 4, 78: PRINT " "
I = NL: GOTO A4X

A4: A$ = INKEY$: IF A$ = "" THEN GOTO A4
IF A$ = CHR$(&H1B) THEN

REM Press ESCAPE to quit cursor option.
PUT (XP!, YP!), CLN
LOCATE YE / CUH + 2.5, 1
PRINT STRING$(40 - LEN(XLABEL$) / 2, " "); : GOTO AO

END IF
A$ = MID$(A$, 2, 1)
IF A$ = "K" OR A$ = "S" OR A$ = "M" OR A$ = "t" THEN

PUT (XP!, YP!), CLN
REM LEFT arrow.
IF A$ = "K" THEN INC = -1
REM CTRL LEFT arrow.
IF A$ = "S" THEN INC = -(.01 * NP)
REM RIGHT arrow.
IF A$ = "M" THEN INC = 1
REM CTRL RIGHT arrow.
IF A$ = "t" THEN INC = (.01 * NP)
1 = 1 + INC
IF I < NL THEN I = TOP
IF I > TOP THEN I = NL

A4X: LOCATE YE / CUH +2.5, 1
PRINT "X = "; : PRINT USING XCF$; X!(I);
PRINT " Y = "; : PRINT USING YCF$; Y!(I);
XP! = XB + (X!(I) - XL!) * XFAC! - 3
YP! = YE - (Y!(I) - YL!) * YFAC! - 1.5 * CUH
IF YP! < YB THEN YP! = YB - 1.5 * CUH
IF YP! < 0 THEN YP! = YB
IF YP! > YE THEN YP! = YE - 1.5 * CUH
PUT (XP!, YP!), CLN
GOTO A4

END IF
GOTO A4

END IF

www.manaraa.com

171
REM Press F6 key for math options.

IF MID$(AN$, 2 , 1) = »@» THEN
LOCATE 25, 1
PRINT " S=SMOOTH D=DIVIDE BY -WA2";
PRINT " X=SCALE X AXIS Y=SCALE Y AXIS

A6: A$ = INKEY$: IF A$ = "" THEN GOTO A6
IF A$ = CHR$(&H1B) THEN GOTO AO
IF UCASE$(A$) = "S" THEN

LOCATE 25, 1: PRINT STRING$(80, " ");
CALL SMOOTH(1, 5, Y!(), NP)
OOPS = 0: REDRAW = 1: EXIT SUB

END IF
IF UCASE$(A$) = »D" THEN

LOCATE 25, 1: PRINT STRING$(80, " ");
FOR I = 1 TO NP
Y!(I) = Y!(I) / -((XI(I) * 6.283186) A 2)
NEXT
OOPS = 0: REDRAW = 1: EXIT SUB

END IF
IF UCASE$(A$) = "X" THEN

LOCATE 25, 1: PRINT STRING$(80, " ");
U = YB / CUH: W = 1
LOCATE U, W: PRINT STRING$(79, " ")
LOCATE U, W: INPUT "SCALE X AXIS BY: ", A$
LOCATE U, W: PRINT STRING$(79, " ")
A! = VAL(A$): IF A$ = "" THEN GOTO AO
FOR I = 1 TO NP

X! (I) = X! (I) * A!
NEXT
A$ = "": OOPS = 0: REDRAW = 1: EXIT SUB

END IF
IF UCASE$(A$) = »Y» THEN

LOCATE 25, 1: PRINT STRING$(80, " ");
U = YB / CUH: W = 1
LOCATE U, W: PRINT STRING$(79, " ")
LOCATE U, W: INPUT "SCALE Y AXIS BY: ", A$
LOCATE U, W: PRINT STRING$(79, " ")
A! = VAL(A$): IF A$ = "" THEN GOTO AO
FOR I = 1 TO NP

Y! (I) = Y! (I) * A!
NEXT
A$ = "": OOPS = 0: REDRAW = 1: EXIT SUB

END IF
GOTO A6

END IF
REM Press F7 to print the plot. Printer must be a LaserJet
REM Series II or an Epson compatible located at LPT1:

IF MID$(AN$, 2 , 1) = "A" THEN
AZ$ = PRN$ = "E": DPI$ = ""
LPT =1: XS = 1: YS = 1: OT = 1
LOCATE 25, 1

www.manaraa.com

172
PRINT " J=LASERJET II *E=EPSON";
PRINT " P=PORTRAIT *L=LANDSCAPE";
PRINT » G=GO ";
DO WHILE AZ$ <> "G"

CALL GETKEY(AZ$)
IF AZ$ = "J" THEN

PRN$ = "L»: LOCATE 25,
PRINT » J=LASERJET II
PRINT » P=PORTRAIT

END IF
IF AZ$ = "E" THEN

PRN$ = "E": LOCATE 25,
PRINT "

END IF
IF AZ$ = "P" THEN

OT = 0: DPI$ = "100": LOCATE 25, 26
PRINT » P=PORTRAIT " ;

END IF
IF AZ$ = "L" THEN

OT = 1: DPI$ = "075": LOCATE 25, 26
PRINT " L=LANDSCAPE";

END IF
IF AZ$ = CHR$(27) THEN GOTO AO
IF PRN$ = "E" THEN

DPI$ = "": XS = 1: YS = 1
IF SC$ = "C" THEN XS = 1: YS = 2

END IF
REM Make the plot.
IF AZ$ = "G" AND PRN$ <> "" THEN

IF PRN$ = "L" THEN
IF DPI$ = "" THEN DPI$ = "100": OT = 0
LPRINT CHR$(27) + "*p» + "200" + "Y»;
IF OT = 0 THEN LPRINT CHR$(27) + "*p" + "300" + "X";
IF OT = 1 THEN LPRINT CHR$(27) + "*p" + "400" + "X";

END IF
LOCATE 25, 1: PRINT STRING$(80, " ");
CALL ScrnDump2(DPI$, LPT, 0, XS, YS, OT)
IF LPT = -1 THEN

BEEP: GOTO AO: REM No Printer.
END IF
IF PRN$ = "E" AND OT = 0 THEN LPRINT CHR$(13);
IF PRN$ = "E" AND OT = 1 THEN LPRINT CHR$(12);
IF PRN$ = "E" THEN LPRINT CHR$(27) + "<";
IF PRN$ = "L" THEN LPRINT CHR$(27) + "E";
GOTO AO

END IF
LOOP

END IF
GOTO Al

1
It

L=LANDS CAPE";

1
E=EPSON";

END SUB

www.manaraa.com

173
REM ************* GET SINGLE KEY INPUT SUBROUTINE **************
SUB GETKEY (A$)

A$ = ""
DO WHILE A$ = A$ = INKEY$: LOOP
A$ = UCASE$(A$)

END SUB

REM ***************** MAIN MENU SUBROUTINE *********************
SUB MENU (A)

CLS : VIEW PRINT 1 TO 25
LOCATE 6, 21: PRINT " PGData (ver l.o)
LOCATE 7, 21: PRINT "
LOCATE 8, 21: PRINT " [1] DATA ACQUISITION MODULE
LOCATE 9, 21: PRINT " [2] TRANSFER FUNCTION MODULE
LOCATE 10, 21 PRINT " [3] CHATTER ANALYSIS MODULE
LOCATE 11, 21 PRINT " [4] SYSTEM TEST MODULE
LOCATE 12, 21 PRINT " [5] DATA PROCESSING MODULE
LOCATE 13, 21 PRINT " [6] PCDATA SETUP MODULE
LOCATE 14, 21 PRINT " (7] QUIT THE PROGRAM
LOCATE 15, 21 PRINT "
LOCATE 16, 21 PRINT " Selection? [1-7]
LOCATE 17, 21 PRINT "
LOCATE 18, 21 PRINT "

MNX: A$ = INKEY$: A = VAL(A$)
IF A$ = CHR$(27) THEN CLS : END
IF A < 1 OR A > 7 THEN GOTO MNX

END SUB

REM ********** DRAW ONE PLOT ON THE SCREEN SUBROUTINE **********
SUB PLOT1 (X!(), Yl!(), N) STATIC

SHARED XM!, XL!, YM!, YL!, XD, YD, YPL, YB, YE, CUH
SHARED SC$, XL1$, YL1$, XL2$, YL2$, XLABEL$, YLABEL$
SHARED OOPS, REDRAW, PLOTCOUNT, LIM, PLOTONE, PLOTTWO
CLS : PLOTONE = 1: PLOTTWO = 0: PLOTCOUNT =1: YD = 4
IF SC$ = "C" THEN

Gl: CUH =8: YB = CUH: YE = 165: YPL = (YE - YB)
XLABEL$ = XL1$: YLABEL$ = YL1$
CALL CURVE(X!(), Yl!(), N)
IF REDRAW OR OOPS THEN GOTO Gl

END IF
IF SC$ = "E" THEN

G2: CUH =14: YB = CUH: YE = 303: YPL = (YE - YB)

www.manaraa.com

174
XLABEL$ = XL1$: YLABEL$ = YL1$
CALL CURVE(X !(), Yl!(), N)
IF REDRAW OR OOPS THEN GOTO G2

END IF
END SUB

REM ********* DRAW TWO PLOTS ON ONE SCREEN SUBROUTINE **********
SUB PLOT2 (XI!(), Yl!(), Nl, X2!(), Y2!(), N2) STATIC

SHARED XM!, XL!, YM!, YL!, XD, YD, YPL, YB, YE, CUH
SHARED SC$, XL1$, YL1$, XL2$, YL2$, XLABEL$, YLABEL$
SHARED OOPS, REDRAW, PLOTCOUNT, LIM, PLOTONE, PLOTTWO
YD = 4: PLOTONE = 0: PLOTTWO = 1: PLOTCOUNT = 0
IF SC$ = "C" THEN

Kl: CLS : CUH =8: YB = CUH: YE = 78: YPL = YE - YB
PLOTCOUNT = 1: XLABEL$ = XL1$: YLABEL$ = YL1$
CALL CURVE(XI!(), Yl!(), Nl)
IF REDRAW OR OOPS THEN GOTO Kl

K2: CUH =8: YB = 104: YE = 174: YPL = YE - YB
PLOTCOUNT = 2: XLABEL$ = XL2$: YLABEL$ = YL2$
CALL CURVE(X2!(), Y2!(), N2)
IF OOPS THEN GOTO Kl
IF REDRAW THEN GOTO K2

END IF
IF SC$ = "E" THEN

El: CLS : CUH = 14: YB = CUH: YE = 136: YPL = YE - YB
PLOTCOUNT = 1: XLABEL$ = XL1$: YLABEL$ = YL1$
CALL CURVE(XI!(), Yl!(), Nl)
IF REDRAW OR OOPS THEN GOTO El

E2: CUH =14: YB = 182: YE = 304: YPL = YE - YB
PLOTCOUNT = 2: XLABEL$ = XL2$: YLABEL$ = YL2$
CALL CURVE(X2!(), Y2!(), N2)
IF OOPS THEN GOTO El
IF REDRAW THEN GOTO E2

END IF
END SUB

REM ************ READ A TO D IMMEDIATE SUBROUTINE **************
SUB READ.AD (ADCHAN, VAD!)
WAIT STAT.REG, COM.WAIT
OUT COM.REG, CADIN
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, 0
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, ADCHAN

www.manaraa.com

175
WAIT STAT.REG, READ.WAIT
LOW = INP(DATA.REG)
WAIT STAT.REG, READ.WAIT
HIGH = INP(DATA.REG)
DATA.VALUE! = HIGH * 256 + LOW
IF DATA.VALUE! > 32767 THEN DATA.VALUE! = DATA.VALUE! - 65536!
VAD! = RES! * DATA.VALUE! - OFFSET

END SUB

REM ******* SUBROUTINE TO PROGRAM THE DMA CONTROLLER CHIP ******
SUB SET.DMA.CONTROLLER (DMAMODE, NC)

DMACOUNT# = CDBL((NC * 2) - 1)
DMACOUNTH = INT(DMACOUNT# / 256)
DMACOUNTL = DMACOUNT# - DMACOUNTH * 256
OUT MODEREG,
OUT BYTEREG,
OUT BASEREG,
OUT BASEREG,
OUT COUNTREG,
OUT COUNTREG,
OUT PAGEREG,
OUT MASKREG,

DMAMODE
DMACHAN
DMABASEL
DMABASEH
DMACOUNTL
DMACOUNTH

DMAPAGE
DMACHAN

Set DMA mode.
Clear byte flip-flop.
Set lo byte DMA memory base address.
Set hi byte DMA memory base address.
Set lo byte DMA byte count.
Set hi byte DMA byte count.
Set DMA memory page.
Clear DMA channel mask.

END SUB

REM ********** SUBROUTINE TO SET UP DT-2818 FOR DMA ************
SUB SET.DMA.DT2818 (TICKS, START.CHAN, END.CHAN)
REM Set-up DT-2818 for continuous DMA operation.

REM Write SET CLOCK PERIOD command.
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
WAIT STAT.REG, COM.WAIT
OUT COM.REG, CCLOCK

REM Write high and low bytes of TICKS.
TICKSH = INT(TICKS / 256)
TICKSL = TICKS - TICKSH * 256
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, TICKSL
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, TICKSH

REM Write SET A/D PARAMETERS command.
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
WAIT STAT.REG, COM.WAIT
OUT COM.REG, CSAD

REM Write A/D gain byte. (Always 0 for DT-2818)
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT

www.manaraa.com

176
OUT DATA.REG, 0

REM Write A/D start channel byte.
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, START.CHAN

REM Write A/D end channel byte.
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, END.CHAN

REM Write two bytes, dummy number of conversions.
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, &H5
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, &H5

END SUB

REM *************** SUBROUTINE TO SMOOTH DATA ******************
SUB SMOOTH (M, Z, d!(), N)
REM Data is smoothed "M" times by "Z" point approximation

LIM1 = INT(Z / 2 + 1): LIM2 = LIM1 - 1
FOR J = 1 TO M

FOR I = LIM1 TO N - LIM2
DAT1! = 0
FOR K = -LIM2 TO LIM2

DATl! = DATl! + d!(I + K) / Z
NEXT
d!(I) = DATl!

NEXT
NEXT

END SUB

REM ********* SUBROUTINE TO STOP AND CLEAR THE DT-2818 *********
SUB STOP.AND.CLEAR

OUT COM.REG, CSTOP
TEMP = INP(DATA.REG)
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
WAIT STAT.REG, COM.WAIT
OUT COM.REG, CCLEAR
CALL CHECK.ERROR

END SUB

REM ************ WRITE BINARY DATA FILE SUBROUTINE *************
SUB WRITE.BINARY (Filename$, DAT!(), TOTALS, TIMESTEP!)

PRINT "Writing "; Filename$; " ..."
OPEN Filename$ FOR BINARY ACCESS WRITE AS #1

www.manaraa.com

177
PUT #1, , TOTALS: PUT #1, , TIMESTEP!
FOR I = 1 TO TOTALS

PUT #1, , DAT!(I)
NEXT

CLOSE #1
END SUB

REM ************* WRITE D-A IMMEDIATE SUBROUTINE ***************
SUB WRITE.DA (DACHAN, VOLTS!)

DATA.VALUE! = CINT((VOLTS! + OFFSET) * FACTOR / RANGE)
IF DATA.VALUE! > (FACTOR - 1) THEN DATA.VALUE! = FACTOR - 1
WAIT STAT.REG, COM.WAIT
OUT COM.REG, CDAOUT
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, DACHAN
HIGH = INT(DATA.VALUE! / 256!)
LOW = DATA.VALUE! - HIGH * 256!
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, LOW
WAIT STAT.REG, WRITE.WAIT, WRITE.WAIT
OUT DATA.REG, HIGH

END SUB

www.manaraa.com

REFERENCES

Altintas, Y., Yellowley, I., Tlusty, J., "The Detection of
Tool Breakage in Milling," Sensors and Controls for
Manufacturing, PED-Vol. 18, Proceedings of the Winter
Annual Meeting, Miami Beach, Florida, pp. 41-48, ASME,
New York, 1985.

Automation Intelligence, "FlexMate Motion Co-Processor
Installation and Maintenance Manual," Automation
Intelligence, Inc., Orlando, Florida, 1987.

Automation Intelligence, "FlexMate Machining Center
Operator's Guide", Automation Intelligence, Inc.,
Orlando, Florida, 1989.

Balakrishnan, P., Kannatey-Asibu, E., Trabelsi, H., Emel, E.,
"A Sensor Fusion Approach to Cutting Tool Monitoring,"
Advances in Manufacturing Systems Integration and
Processes, Proceedings of the 15th Conference on
Production Research and Technology, Berkeley, California,
pp. 101-108, SME, Dearborn, Michigan, 1989.

Birla, S., "Report on Sensors for Adaptive Control and Machine
Diagnostics," General Motors Technical Center, General
Motors Corporation, Warren, Michigan, 1980.

Bollinger, J.G., Duffie, N.A., Computer Control of Machines
and Processes. Addison-Wesley, New York, 1988.

Data Translation, "User Manual for DT-2801 Series Single Board
Analog and Digital I/O Systems," Data Translation, Inc.,
Marlboro, Massachusetts, 1988.

Delio, T.S., "A Sensor-Based Adaptive Control Constraint
System for Automatic Spindle Speed Regulation to Obtain
Highly Stable Milling," Ph.D. Dissertation, Mechanical
Engineering Department, University of Florida,
Gainesville, 1989.

Delio T., Smith, S., Tlusty, J., Zamudio, C., "Stiffness,
Stability, and Loss of Process Damping in High Speed
Machining," Fundamental Issues in Machining, PED-Vol. 43,
Proceedings of the Winter Annual Meeting, Dallas, Texas,
pp. 171-191, ASME, New York, 1990.

178

www.manaraa.com

179
Eman, K., Wu, S.M., "A Feasibility Study of On-Line

Identification of Chatter in Turning Operations,11 Journal
of Engineering for Industry, ASME, Vol. 102, pp. 513-321,
November, 1980.

GenRad, "GR 2515 Computer-Aided Test System Operating Manual,"
GenRad, Inc., Santa Clara, California, 1985.

Johnson, C.M., Richter, F., Spiewak, S.A., "A Comprehensive
Model of the Milling Process for On-Line Tool Condition
Monitoring," Proceedings of the 16th NAMRC, Urbana,
Illinois, pp. 178-189, SME, Dearborn, Michigan, 1988.

Keyvanmanesh, A.E., "Evaluation of Chatter Detection and
Control System," Master's Thesis, Mechanical Engineering
Department, University of Florida, Gainesville, 1990.

Lan, M.-S., Naerheim, Y., "In-Process Detection of Tool
Breakage in Milling," Sensors and Controls for
Manufacturing, PED-Vol. 18, Proceedings of the Winter
Annual Meeting, Miami Beach, Florida, pp. 49-56, ASME,
New York, 1985.

Lauderbaugh, L.K., Ulsoy, A.G., "Model Reference Adaptive
Force Control in Milling," Modeling, Sensing, and Control
of Manufacturing Processes, PED-Vol. 23, Proceedings of
the Winter Annual Meeting, Anaheim, California,
pp. 165-179, ASME, New York, 1986.

Matsushima, K., Bertok, P., Sata, T., "In-Process Detection of
Tool Breakage by Monitoring the Spindle Motor Current of
a Machine Tool," Measurement and Control for Batch
Manufacturing, Proceedings of the Winter Annual Meeting,
Phoenix, Arizona, pp. 145-153, ASME, New York, 1982.

Okafor, A.C., Marcus, M., Tipirneni, R., "Multiple Sensor
Integration Via Neural Networks for Estimating Surface
Roughness and Bore Tolerance in Circular End Milling,"
Proceedings of the 18th NAMRC, University Park,
Pennsylvania, pp. 128-136, SME, Dearborn, Michigan, 1990.

Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling,
W.T., Numerical Recipes. Cambridge University Press,
New York, 1986.

Pressman, R.S., Williams, J.E., Numerical Control and Computer
Aided Manufacturing. John Wiley & Sons, New York, 1977.

Principe, J.C., Yoon, T., "A Numeric-Symbolic Approach to
Machine Tool Supervision," Sensors Expo West Proceedings,
Long Beach, California, pp. 301B1-301B8, Helmers
Publishing, Peterborough, New Hampshire, 1990.

www.manaraa.com

180
Richter, F., Spiewak, S.A., "A System for On-Line Detection

and Prediction of Catastrophic Tool Failure in Milling,"
Proceedings of the 17th NAMRC, Columbus, Ohio,
pp. 137-143, SME, Dearborn, Michigan, 1989.

Smith, K.S., "Chatter, Forced Vibrations, and Accuracy in
High-Speed Milling," Master's Thesis, Mechanical
Engineering Department, University of Florida,
Gainesville, 1985.

Smith, K.S., "Automatic Selection of the Optimum Spindle Speed
in High-Speed Milling," Ph.D. Dissertation, Mechanical
Engineering Department, University of Florida,
Gainesville, 1987.

Smith, S., Delio, T., "Sensor-based Control for Chatter-free
Milling by Spindle Speed Selection," Control Issues in
Manufacturing Processes, DSC-Vol. 18, Proceedings of the
Winter Annual Meeting, San Francisco, California,
pp. 107-114, ASME, New York, 1989.

Smith, S., Tlusty, J., "Update on High Speed Milling
Dynamics," Journal of Engineering for Industry, ASME,
Vol. 112, pp. 142-149, May, 1990.

Tarng, Y.-S., "Sensing of Tool Breakage in Milling," Master's
Thesis, Mechanical Engineering Department, University of
Florida, Gainesville, 1986.

Tarng, Y.-S., "Use of Various Signals for Milling Cutter
Breakage Detection," Ph.D. Dissertation, Mechanical
Engineering Department, University of Florida,
Gainesville, 1988.

Tlusty, J., "Machine Dynamics," Handbook of High Speed
Machining Technology, R.I. King, ed., Chapman and Hall,
New York, 1985.

Tlusty, J., Andrews, G.C., "A Critical Review of Sensors for
Unmanned Machining," CIRP Annals, Vol. 32-2, pp. 563-572,
1983.

Tlusty, J., Smith, S., "High Speed High Power Milling,"
Advances in Manufacturing Systems Integration and
Processes, Proceedings of the 15th Conference on
Production Research and Technology, Berkeley, California,
pp. 215-222, SME, Dearborn, Michigan, 1989.

Tlusty, J., Tarng, Y.-S., "Sensing Cutter Breakage in
Milling," CIRP Annals, Vol. 37-1, pp. 45-51, 1988.

www.manaraa.com

181
Tlusty, J., Tyler, T., "Adaptive Control for Die Milling:

Criteria and Strategies," Computer-Aided Design and
Manufacture of Dies and Molds, PED-Vol. 32, Proceedings
of the Winter Annual Meeting, Chicago, Illinois,
pp. 45-60, ASME, New York, 1988.

Tyler, T.R., "Adaptive Control for Preventing Breakage of
Flexible End Mills," Master's Thesis, Mechanical
Engineering Department, University of Florida, 1989.

Ulsoy, A.G., Koren, Y. , Rasmussen, F., "Principal Developments
in the Adaptive Control of Machine Tools," Measurement
and Control for Batch Manufacturing, Proceedings of the
Winter Annual Meeting, Phoenix, Arizona, pp. 105-119,
ASME, New York, 1982.

Vierck, C., "MTL Progress Report: Cutter Breakage," Internal
Report, Machine Tool Laboratory, Mechanical Engineering
Department, University of Florida, Gainesville, 1991.

Walters, R. "A Distributed Implementation for In-Process
Monitoring of Machine Tools," Ph.D. Dissertation,
Electrical Engineering Department, University of Florida,
in progress, 1991.

Week, M. Verhaag, E., Gather, M., "Adaptive Control for Face
Milling Operations with Strategies for Avoiding Chatter
Vibrations and for Automatic Cut Distribution," CIRP
Annals, Vol. 24-1, pp. 405-409, 1975.

Wells, R.L., "Maintaining the Supervision System Interface,"
Internal Report, Machine Tool Laboratory, Mechanical
Engineering Department, University of Florida,
Gainesville, 1991a.

Wells, R.L., "DMA Data Acquisition Using the DT-2818 A/D-D/A
Board and its Application in the Program PCDATA,"
Internal Report, Machine Tool Laboratory, Mechanical
Engineering Department, University of Florida,
Gainesville, 1991b.

Wells, R.L., "Modifications to the Adaptive Control System,"
Internal Report, Machine Tool Laboratory, Mechanical
Engineering Department, University of Florida,
Gainesville, 1991c.

White-Sunstrand, "Electrical Maintenance," White-Sunstrand
Machine Tool Company, Belvidere, Illinois, 1983a.

White-Sunstrand, "Mechanical Maintenance," White-Sunstrand
Machine Tool Company, Belvidere, Illinois, 1983b.

www.manaraa.com

182
Wright, P., Greenfield, I., Hayes, C., "A Prototype of a 'Next

Generation-Control' Environment: Expert Systems for
Planning and Sensor Integration," Proceedings of the 18th
NAMRC, University Park, Pennsylvania, pp. 322-328, SME,
Dearborn, Michigan, 1990a.

Wright, P.K., Hansen, F.B., Pavlakos, E., "Tool Wear and
Failure Monitoring on an Open Architecture Machine Tool,"
Fundamental Issues in Machining, PED-Vol. 43, Proceedings
of the Winter Annual Meeting, Dallas, Texas, pp. 211-228,
ASME, New York, 1990b.

Yoon, T., "A Numeric/Symbolic Approach to Machine Tool
Supervision," Ph.D. Dissertation, Electrical Engineering
Department, University of Florida, Gainesville, 1990.

www.manaraa.com

BIOGRAPHICAL SKETCH

After having worked for several years in the contract
engineering industry as a mechanical designer, the author
obtained his Bachelor of Science degree in mechanical
engineering from the University of South Florida at Tampa in
1985. He returned to contract engineering, and in 1987 entered
the University of Florida to further his education. He earned
a Master of Science degree in mechanical engineering in 1988.
Upon completion of his doctorate, the author plans to join a
university faculty and pursue a career in teaching and
research.

183

www.manaraa.com

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequateA in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Jiri tlusty, Chairman
Graduate Research Professor of

Mechanical Engineering

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

Carl Crane
Assistant Professor of

Mechanical Engineering

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

John K. Schueller
Associate Professor of

Mechanical Engineering

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

'“Kevin Scott Smith
Assistant Professor of

Mechanical Engineering

www.manaraa.com

I certify that I have read this study and that in my
opinion it conforms to acceptable standards of scholarly
presentation and is fully adequate, in scope and quality, as
a dissertation for the degree of Doctor of Philosophy.

A x / W O f r y , Ẑ\/bAlw\
Senser Yeralan
Associate Professor of

Industrial and
Systems Engineering

This dissertation was submitted to the Graduate Faculty
of the College of Engineering and to the Graduate School and
was accepted as partial fulfillment of the requirements for
the degree of Doctor of Philosophy.

August, 1991 c
pv Winfred M. Phillips V V

Dean, College of Engineering

Madelyn M. Lockhart
Dean, Graduate School

